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요 약  

 
본 논문에서는 상용 WiFi NIC로 측정한 CSI를 이용하여 실내 사람 수 추정 및 위치 인식을 수행하는 메타

러닝 기반 센싱 기법을 제안한다. 하드웨어 오프셋과 환경 변화로 인한 성능 저하를 완화하기 위해 저복잡도

의 CSI 전처리 기법과 MAML 기반 학습 구조를 결합하였다. 수치 실험 결과, 제안 기법은 소량의 적응 데

이터만으로도 다양한 환경에서 안정적인 센싱 성능을 달성함을 확인하였다. 

 

Ⅰ. 서 론  

실내 환경에서 사람의 수와 위치를 인식하는 기술은 

스마트 홈 및 지능형 서비스 구현을 위해 중요한 

요소이다. 특히 WiFi 신호를 이용한 센싱 방식은 기존 

무선 인프라를 활용할 수 있어 비용 효율적이며, 카메라 

기반 방식에서 발생할 수 있는 사생활 침해 문제를 피할 

수 있다는 장점이 있다 [1]. 

WiFi network interface card(NIC)를 통해 획득되는 

채널 상태 정보(channel state information, CSI)는 다중 

경로 환경에서의 신호 변화를 세밀하게 반영할 수 있어 

사람 수 추정 및 위치 인식에 효과적으로 활용될 수 

있다. 그러나 CSI 는 하드웨어 오프셋, 외부 WiFi 간섭, 

그리고 측정 환경 변화에 민감하여, 특정 환경에서 

학습된 딥러닝 기반 모델은 새로운 환경에서 성능 

저하가 발생하는 한계가 있다. 

최근 이러한 문제를 해결하기 위해 메타러닝(meta-

learning)을 활용한 접근이 제안되었으며, 소량의 적응 

데이터만으로도 환경 변화에 빠르게 대응할 수 있음이 

보고되었다 [2], [3]. 본 논문에서는 상용 WiFi NIC 로 

측정한 CSI 에 대해 저복잡도의 전처리 기법을 적용하고, 

이를 model-agnostic meta-learning(MAML) 기반 

메타러닝 모델과 결합한 사람 수 추정 및 위치 인식 

기법을 제안한다. 결과적으로 제안 기법이 기존 학습 

방식 대비 적은 적응 데이터만으로도 안정적인 센싱 

성능을 달성함을 보여주었다. 

Ⅱ. 본론  

본 논문에서는 상용 WiFi NIC 을 이용하여 실내 

환경에서 CSI 를 측정한다. 송신기와 수신기로 구성된 

WiFi 링크에서 수신기는 다중 안테나 및 다중 

부반송파(subcarrier)에 대한 CSI 를 획득하며, 각 CSI 

샘플은 부반송파, 공간 링크, 패킷 인덱스로 구성된다. 

수신된 CSI 는 실제 채널 성분뿐만 아니라 하드웨어 

불완전성으로 인한 위상 오프셋과 외부 WiFi 

장치로부터의 간섭 성분을 포함한다. 이를 고려한 𝑛𝑛번째 

패킷의 CSI는 다음과 같이 표현할 수 있다. 
ℎ�(n, k, m) = e𝑗𝑗2𝜋𝜋𝜖𝜖𝑜𝑜(𝑛𝑛,𝑘𝑘)�ℎ(n, k, m) + ℎ𝐼𝐼(n, k, m)�+ 𝜖𝜖𝑎𝑎(n, k) (1) 

여기서 ℎ(𝑛𝑛, 𝑘𝑘,𝑚𝑚)는 실제 채널, ℎ𝐼𝐼(n, k, m)은 간섭 채널, 

𝜖𝜖𝑜𝑜(𝑛𝑛,𝑘𝑘)는 하드웨어 오프셋, 𝜖𝜖𝑎𝑎(𝑛𝑛, 𝑘𝑘)는 잡음을 나타낸다. 

이러한 오프셋 성분은 사람 센싱 성능을 저하시키는 주

요 요인으로 작용한다. 

 이를 완화하기 위해 본 논문에서는 서버 단에서 저복

잡도의 CSI 전처리 기법을 적용한다. 전체 전처리 과정

은 CSI 분해, 진폭 정규화, 위상 오프셋 제거의 세 단계 

 
그림 1. WiFi NIC을 이용한 CSI 측정 시스템. 

 
그림 2. CSI preprocessing과 메타러닝 모델을 이용한 

사람 수 추정 및 위치 인식 시스템. 

 

로 구성된다. 먼저, 𝑛𝑛번째 패킷에서 부반송파 𝑘𝑘와 공간 

링크 𝑚𝑚에 대한 CSI 는 진폭 및 위상 성분으로 분리된다. 

�𝐻𝐻�𝑛𝑛,𝐴𝐴�𝑘𝑘,𝑚𝑚  =  ��𝐻𝐻�𝑛𝑛�𝑘𝑘,𝑚𝑚� ,   �𝐻𝐻�𝑛𝑛,𝑃𝑃�𝑘𝑘,𝑚𝑚  =  ∠ ��𝐻𝐻�𝑛𝑛�𝑘𝑘,𝑚𝑚
�.  (2) 

진폭 오프셋을 제거하기 위해, 각 공간 링크에 대해 부
반송파 평균 기반 정규화를 수행한다. 

�Ḣ𝑛𝑛,𝐴𝐴�:,𝑚𝑚  =
�𝐻𝐻�𝑛𝑛,𝐴𝐴�:,𝑚𝑚

1
𝐾𝐾
∑ �𝐻𝐻�𝑛𝑛,𝐴𝐴�𝑘𝑘,𝑚𝑚
𝐾𝐾
𝑘𝑘=1

.                             (3) 

위상 성분의 경우, 하드웨어 오프셋으로 인해 부반송파 

인덱스에 비례하는 선형 성분과 상수 성분을 포함하므

로, 이를 제거하기 위해 부반송파에 대한 선형 모델을 

적용한다. 추정된 선형 성분을 제거한 전처리된 위상 성

분은 다음과 같이 표현된다. 

�Ḣ𝑛𝑛,𝑃𝑃� =  �𝐻𝐻�𝑛𝑛,𝑃𝑃�  −  𝑋𝑋𝛽𝛽𝑛𝑛,𝑚𝑚.                            (4) 
여기서 X𝛽𝛽𝑛𝑛,𝑚𝑚는 부반송파에 따른 선형 및 상수 위상 오 

프셋을 나타낸다. 전처리된 CSI 는 이후 메타러닝 기반 

사람 수 추정 및 위치 인식 모델의 입력으로 사용된다.  



 

(a) 위치 인식 성능 

 

(b) 사람 수 추정 성능 

그림 3. 적응 샘플 수에 따른 정확도 성능 비교. 

 

제안한 전처리 기법은 추가적인 필터링 없이 간단한 

연산만으로 구현 가능하여 실시간 센싱에 적합하다. 

전처리된 CSI를 이용하여 사람 수 추정 및 위치 인식

을 수행하기 위해 본 논문에서는 메타러닝 기반 학습 

구조를 적용한다. 기존의 딥러닝 기반 센싱 모델은 특정 

환경에서 수집된 데이터에 대해 학습되므로, 환경이 변

화할 경우 성능 저하가 발생하는 한계가 있다. 이를 해

결하기 위해, 본 논문에서는 소량의 적응 데이터만으로

도 새로운 환경에 빠르게 대응할 수 있는 MAML 기법

을 사용한다. 

메타러닝에서는 서로 다른 측정 환경을 개별 task 로 

정의하고, 다양한 task 에 대해 공통적으로 잘 동작하는 

초기 모델 파라미터를 학습한다. 이를 통해 새로운 환경

에서도 적은 수의 CSI 샘플만으로 효과적인 모델 적응

이 가능하다. 본 논문에서는 전처리된 CSI 를 입력으로 

하는 CNN 기반 분류 모델을 기본 학습기로 사용하며, 

출력은 사람 수 또는 위치 영역에 대한 클래스 확률로 

정의된다. 메타 학습 단계에서 각 task 에 대해 모델 파

라미터는 다음과 같이 업데이트된다. 

𝜃𝜃′ =  𝜃𝜃 −  𝛼𝛼 𝛻𝛻𝜃𝜃𝐿𝐿train(𝜃𝜃).                              (5) 
여기서 𝜃𝜃 는 메타 학습을 통해 학습된 초기 모델 

파라미터, 𝛼𝛼는 학습률, 𝐿𝐿train은 각 task 에 대한 분류 

손실 함수를 나타낸다. 메타 학습 단계에서는 여러 

task 에 대해 업데이트된 파라미터를 기반으로 검증 

손실을 최소화하도록 초기 파라미터 𝜃𝜃 를 반복적으로 

최적화한다. 

메타 학습이 완료된 후, 새로운 환경에서는 소량의 

적응 CSI 샘플을 이용하여 모델을 빠르게 미세 조정한 

뒤 사람 수 추정 및 위치 인식을 수행한다. 이러한 

메타러닝 기반 접근은 환경 변화에 강인한 센싱 성능을 

제공하며, 기존 사전학습 또는 전이학습 기반 방법 대비 

적은 적응 데이터로도 안정적인 성능을 달성할 수 있다. 

그림 3 은 적응(adaptation) 샘플 수 𝑁𝑁adpt에 따른 사람 

수 추정 및 위치 인식 정확도를 비교한 결과를 보여준다. 

비교 대상은 사전학습 기반 모델(pre-training, Pre), 

전이학습 기반 모델(transfer learning, TL), 메타러닝 

기반 모델(Meta)이며, 각 모델에 대해 CSI 전처리 적용 

여부를 함께 비교하였다. 그림 3(a)의 위치 인식 결과를 

보면, 적응 샘플 수가 매우 적은 구간에서는 모든 

기법에서 성능 저하가 발생하지만, 메타러닝 기반 모델이 

사전학습 및 전이학습 기반 방법 대비 더 빠르게 성능이 

향상됨을 확인할 수 있다. 특히 CSI 전처리를 적용한 

Meta-CSI 의 경우, 적은 수의 적응 샘플만으로도 95% 

이상의 정확도를 달성하며, 다른 방법 대비 가장 

안정적인 성능을 보인다. 그림 3(b)의 사람 수 추정 

결과에서도 유사한 경향이 관찰된다. 적응 샘플 수가 

증가함에 따라 모든 기법의 성능이 향상되지만, 메타러닝 

기반 모델은 적은 샘플 수 구간에서 가장 가파른 성능 

향상을 보인다. 이는 메타 학습을 통해 다양한 환경에 

대한 일반화된 초기 파라미터를 학습하였기 때문으로 

해석할 수 있다. 또한 CSI 전처리를 적용한 경우, 

전반적인 정확도가 향상되어 메타러닝의 효과가 더욱 

뚜렷하게 나타난다. 이러한 결과는 제안한 메타러닝 기반 

접근이 환경 변화에 강인하며, 실제 환경에서 제한된 

적응 데이터만을 사용할 수 있는 상황에서도 효과적인 

사람 수 추정 및 위치 인식이 가능함을 보여준다. 

Ⅲ. 결론  

본 논문에서는 상용 WiFi NIC 로 측정한 CSI 를 

이용하여 사람 수 추정 및 위치 인식을 수행하는 

메타러닝 기반 센싱 기법을 제안하였다. 하드웨어 

오프셋의 영향을 완화하기 위해 저복잡도의 CSI 전처리 

기법을 적용하고, 이를 MAML 기반 메타러닝 모델과 

결합하였다. 실험 결과, 제안 기법은 기존 사전학습 및 

전이학습 기반 방법 대비 적은 수의 적응 샘플만으로도 

높은 센싱 정확도를 달성함을 확인하였다.  
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