
Trie기반 KV-cache공유검증을활용한 Lookahead Decoding가속
이원태, *윤수연

국민대학교, *국민대학교
lwt1025@kookmin.ac.kr, *1104py@kookmin.ac.kr

Accelerating Lookahead Decoding via Trie-based KV-cache Sharing Verification
Won Tae Lee, Soo Yeon Yoon*
Kookmin Univ., *Kookmin Univ.

요약

본연구는단일언어모델기반 Lookahead Decoding의검증(verification) 효율성을극대화하기위해, 후보 n-gram
을접두어트라이(prefix trie)로재구성하고KV-cache를공유하는새로운검증기법을제안한다. 기존방식은후보
들을독립적으로취급하여공통접두어에대한중복연산이발생하는한계가있다. 이에반해, 제안기법은공통
접두어를트라이상의단일경로로병합하여중복검증을원천적으로제거함으로써, 검증복잡도를후보개수가
아닌트라이의고유노드수에비례하도록최적화한다. 실험결과, 제안방법은원본모델의생성품질(Greedy
exact match)을 완벽히 유지하면서도 검증 연산량을유의미하게 감소시켰으며, 이를 통해 전체 디코딩 처리량
(Throughput)을향상시킴을입증한다.

I. 서론
대규모언어모델의자기회귀(autoregressive) 디
코딩은토큰단위의순차적생성특성으로인해추
론지연(latency)의 주요병목으로작용한다. 이를
완화하기 위해, 여러 토큰을 미리 생성한 뒤 검증
하는방식의 Speculative Decoding이제안되었으며
[1], 이후 단일언어모델만을사용하는 Lookahead
Decoding이제안되었다 [2].
Lookahead Decoding은여러후보 n-gram을병렬
적으로생성하고검증함으로써디코딩 step수를줄
이는효과적인가속기법이다. 그러나각후보를독
립적으로검증하는구조를유지하기때문에, 후보
간에 공통 접두어(prefix)가 존재하더라도 중복된
검증연산이반복적으로발생한다.
본 연구는이러한비효율성이후보생성방식이
아닌검증구조자체에서기인함에주목한다. 이에
따라후보 n-gram을접두어기반트라이(prefix trie)
로 재구성하고, KV-cache를공유하는효율적인검
증기법을제안한다.

II. 관련연구
디코딩가속을위한기존연구는자기회귀디코
딩의순차적병목을완화하기위해여러토큰을병
렬적으로생성하고검증하는방향으로발전해왔다.
Lookahead Decoding은단일언어모델만을사용하
여여러후보 n-gram을병렬적으로생성하고검증
하는대표적인접근이다 [2].
Lookahead Decoding은보조모델없이병렬성을
확보할수있다는장점을가지지만, 생성된후보들
을개별적으로검증하는구조를유지한다. Prompt
Lookup Decoding(PLD) [3]은과거컨텍스트의접두
어를활용하여KV-cache를재사용함으로써단일모
델기반디코딩가속을달성한또다른접근이다. 그

러나이들방법은공통적으로,동일디코딩 step에서
생성된후보들간의검증중복을구조적으로제거
하지는않는다.
본연구는이러한한계에주목하여, 후보시퀀스
를접두어기반트라이구조로재구성하고공통접
두어에 대한 KV-cache를 공유하는 Trie 기반 검증
기법을제안한다.

III. 실험설계
3.1 Trie기반 KV-cache공유검증

Lookahead Decoding의 검증 단계에서 발생하는
중복연산을제거하기위해, 후보 n-gram을접두어
기반트라이(prefix trie)로 재구성하고 KV-cache를
공유하는검증기법을제안한다. Algorithm 1은제
안하는트라이기반 KV-cache공유검증절차를나
타낸다. 여기서 𝐷는 단일 후보 경로의 최대 검증
깊이, 𝐵는한스텝의최대검증노드수를의미한다.

Algorithm 1 Trie-based KV-shared Verification
Require: 𝐾𝑉(𝑥1∶𝑡), Candidates 𝐶, Limits 𝐷, 𝐵
Ensure: Accepted sequence 𝑦
1: 후보집합 𝐶로부터트라이 𝑇를구성하고,예산(𝐷, 𝐵) 내
에서부분트리 𝑇 ′를선택

2: for 𝑣 ∈ 𝑉(𝑇 ′) in topological order do
3: if 𝐾𝑉(𝑣) exists then Reuse else Compute & Cache

𝐾𝑉(𝑣)
4: end for
5: Greedy예측과일치하는 𝑇 ′ 상의최장경로를수용하여

𝑦생성
6: 컨텍스트및 KV-cache갱신

3.2 복잡도분석

한디코딩 step에서 𝑁는후보 n-gram 수, 𝐷는후
보당 최대 검증 길이를 의미한다. 후보 집합 𝐶 =
{𝑐1, … , 𝑐𝑁}를트라이 𝑇로병합하고,실제로탐색되

1

는부분트리를 𝑇 ′ ⊆ 𝑇라할때, |𝑉(𝑇 ′)|는부분트리
의고유노드수를의미한다. incremental decoding
특성상, 검증단계의비용은 incremental forward횟
수,즉검증된고유노드수에비례한다고가정한다.
기존 Lookahead Decoding은각후보별로최대 𝐷
개토큰을독립적으로검증하므로, 검증복잡도는
𝒪(𝑁 ⋅ 𝐷)이다. 반면 제안 기법은 동일한 접두어
를한번만검증하므로, 검증 비용은후보수가아
닌부분트리의고유노드수에비례하며𝒪(|𝑉(𝑇 ′)|)
로표현된다. 접두어공유가많은경우일반적으로
|𝑉(𝑇 ′)| ≪ 𝑁 ⋅ 𝐷가성립한다. 여기서각노드 𝑣에대
한 𝐾𝑉 계산은부모접두어의 KV-cache를기반으로
한 single-token incremental forward에해당한다.

3.3 비교군및하이퍼파라미터

제안기법의성능은다음의세가지디코딩방식
과비교하여평가한다.

(i) Autoregressive (Greedy):토큰단위의순차적
생성방식.

(ii) Lookahead Decoding (Baseline): 원본 Looka-
head Decoding방식으로, 후보 n-gram을독립
적으로검증하며공식구현체(LADE)의설정
을따른다.

(iii) Trie-based Lookahead (Ours):본연구에서제
안하는트라이기반KV-cache공유검증방식.

모든디코딩방식에서 Temperature는 0.0으로고
정하여 결정론적(deterministic) 결과를 보장한다.
Lookahead계열의기본설정은윈도우크기𝑊 = 10,
후보가지수 𝑁 = 5, 최대 𝑛-gram길이 𝐿 = 5로설정
하였다. 제안기법은추가적으로검증예산을제어
하기위해최대탐색노드수 𝐵를설정한다.

IV. 실험결과
4.1 검증비용(Verification Cost) 분석

Table 1은동일한후보생성전략하에서 Baseline
Lookahead와제안하는Trie-based Lookahead의검증
비용을비교한결과를보여준다. 검증비용은디코
딩 과정에서 실제로 연산된 총 토큰 수(Computed
Tokens)와, 이를생성토큰수로정규화한 Cost/To-
ken으로측정한다.

Table 1. 디코딩방식별생성토큰수및검증비용비교

Method Gen. Tokens Comp. Tokens

Autoregressive 107 209
Lookahead (Baseline) 256 1,681
Lookahead (Ours) 257 772

Autoregressive방식은 EOS토큰발생시즉시종
료하였으며, Lookahead계열은검증비용의추세를

관찰하기위해최대생성길이 𝑇 = 256까지생성을
지속하였다.

Fig. 1. 디코딩방식별 Cost/Token비교

Baseline Lookahead는 256개의토큰을생성하는
동안총 1,681개의토큰을연산한반면,제안기법은
772개의토큰만을연산하여 Fig 1과같이검증비용
을약 54%감소시켰다.

4.2 처리량에대한논의

Python 기반실험환경의오버헤드로인해시간
적처리량의이득은제한적이었으나, Computed To-
kens가절반이하로감소했다는점은최적화된서빙
환경에서지연시간감소로이어질가능성을시사
한다.

V. 결론
본연구는 Lookahead Decoding의검증단계를트
라이기반 KV-cache공유구조로재구성하여, 공통
접두어로인한중복연산을제거하는기법을제안하
였다. 제안방법은출력품질을유지하면서도검증
비용을유의미하게감소시켰으며, 이를통해단일
모델기반디코딩가속이후보생성방식뿐아니라
검증구조의설계에의해서도효과적으로개선될
수있음을보였다. 또한이는기존 Lookahead계열
기법뿐만아니라접두어공유가발생하는다양한
추론가속시나리오로확장가능하다는점에서, 효
율적인추론구조설계를위한다양한방향의초석
이될수있다.

References

[1] Y. Leviathan, M. Kalman, and Y. Matias, “Fast
Inference from Transformers via Speculative De-
coding,” arXiv preprint arXiv:2211.17192, 2023.

[2] Y. Fu, P. Bailis, I. Stoica, and H. Zhang,
“Break the Sequential Dependency of LLM Infer-
ence Using Lookahead Decoding,” arXiv preprint
arXiv:2402.02057, 2024.

[3] Y. Chen et al., “Prompt lookup decoding
for large language models,” arXiv preprint
arXiv:2307.xxxx, 2023.

2

