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Abstract—Integrated sensing and communication (ISAC) en-
ables spectrum-efficient joint sensing and data transmission, but
its broadcast nature makes it vulnerable to eavesdropping and
jamming, especially in UAV-enabled networks. In this paper,
we study a learning-based problem for a RIS-assisted UAV
ISAC system, where secrecy performance is evaluated under
adversarial interference. The problem is addressed using a deep
deterministic policy gradient (DDPG) based learning approach.
Simulation results demonstrate that the proposed method exhibits
improved secrecy performance compared with RIS-free schemes,
although secrecy is evaluated as a performance metric rather
than explicitly optimized.

Index Terms—Reconfigurable intelligent surface, UAV commu-
nications, integrated sensing and communication, physical layer
security, deep reinforcement learning.

I. INTRODUCTION

Integrated Sensing and Communication (ISAC) enables the
joint use of communication signals for data transmission and
sensing, but suffers from security threats such as jamming and
eavesdropping, especially in UAV-enabled dynamic environ-
ments. Reconfigurable Intelligent Surfaces (RIS) can enhance
wireless propagation and improve communication reliability
when combined with UAV platforms, which also has the
potential to benefit communication security.

However, jointly controlling UAV mobility and RIS con-
figuration in dynamic and adversarial environments remains
highly challenging, particularly when sensing, communication,
and secrecy performance must be jointly considered [1].

This paper investigates a learning-based control framework
for RIS-assisted UAV ISAC systems, where UAV trajectories
and RIS phase shifts are optimized using deep reinforcement
learning [2].

II. SYSTEM MODEL

We consider a RIS-assisted UAV-enabled integrated sensing
and communication (ISAC) system operating over a finite time
horizon T , which is discretized into T equal-length time slots.
As shown in Fig. 1 a communication UAV (CUAV) serves K
legitimate ground users, while a cooperative jamming UAV
(JUAV) mitigates potential eavesdropping by interfering with
a passive eavesdropper. To enhance the wireless propagation
environment, a reconfigurable intelligent surface (RIS) with
M passive reflecting elements is deployed at a fixed location.

We adopt a RIS-assisted composite channel model. For an
arbitrary receiver k, which can represent a legitimate user,
the sensing target, or the eavesdropper, the effective channel
between the CUAV and receiver k consists of a direct link and

Fig. 1. Overall scenarios for RIS-Assisted UAV ISAC System.

an RIS-assisted reflected link. Specifically, let hc,k denote the
direct complex channel coefficient from the CUAV to receiver
k, hc,r ∈ CM denote the channel vector from the CUAV to the
RIS, and gr,k ∈ CM denote the channel vector from the RIS
to receiver k. The RIS is modeled by a diagonal phase-shift
matrix

Φ = diag
(
ejθ1 , . . . , ejθM

)
, (1)

where θm ∈ [0, 2π) is the adjustable phase shift of the m-th
reflecting element.

Accordingly, the RIS-assisted effective channel from the
CUAV to receiver k is given by

heff
c,k = hc,k + gH

r,kΦhc,r, (2)

and the corresponding effective channel power gain is

Geff
c,k =

∣∣heff
c,k

∣∣2 . (3)

Using the effective channel gains, the received signal-to-
interference-plus-noise ratio (SINR) at legitimate user k is
expressed as

γk =
PcG

eff
c,k

PjGeff
j,k + σ2

, (4)

where Pc and Pj denote the transmit powers of the CUAV
and the JUAV, respectively, Geff

j,k denotes the effective channel
gain from the JUAV to user k, and σ2 is the noise power.
For simplicity, the JUAV is assumed to interfere through both
direct and RIS-assisted links.

Similarly, the sensing performance is characterized by the
sensing signal-to-noise ratio (SNR) at the target, given by

γs =
PcG

eff
c,s

σ2
, (5)
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Fig. 2. Impact of the Number of RIS Elements on Secrecy and Sensing
Performance.

Fig. 3. Secrecy–Sensing Trade-off under Different RIS Configurations.

where Geff
c,s denotes the RIS-assisted effective channel gain

between the CUAV and the sensing target.
The SINR at the eavesdropper is expressed as

γe =
PcG

eff
c,e

PjGeff
j,e + σ2

, (6)

where Geff
c,e and Geff

j,e denote the effective channel gains from
the CUAV and the JUAV to the eavesdropper, respectively.

Based on the above physical-layer characterization, the sys-
tem performance can be controlled through the UAV mobility
and RIS phase configuration. Accordingly, the CUAV and
JUAV aim to jointly optimize their trajectories and RIS phase
shifts to balance communication and sensing performance over
the mission duration

max
{vc(t),vj(t), θ(t)}

T∑
t=1

(
(1− ws)Rc(t) + ws log

(
1 + γs(t)

))
,

(7)
subject to UAV mobility constraints, where the UAV positions
evolve over time according to their velocity control actions.
Here, vc(t) and vj(t) denote the velocity vectors of the CUAV
and the JUAV, respectively, and ws ∈ [0, 1] controls the
communication–sensing trade-off. Moreover, Rc(t) denotes
the instantaneous sum communication rate of all legitimate
users. The UAV control and RIS phase configuration are
learned using a DDPG agent, where the UAV positions and
sensing SNR are treated as the state, and the UAV velocity
vectors together with RIS phase shifts are treated as the action.

III. SIMULATION RESULTS AND DISSCUSSION

The secrecy performance is evaluated using the instanta-
neous secrecy rate defined as

Rs =
[
log2(1 + γ0)− log2(1 + γe)

]+
, (8)

where [x]+ ≜ max{x, 0} and γ0 denotes the SINR of the
primary user.

Fig. 2 illustrates the impact of the number of RIS reflecting
elements M on the average secrecy rate and sensing SNR. It
is observed that both metrics increase monotonically with M ,

due to the enhanced passive beamforming gain provided by a
larger RIS.

Fig. 3 shows the trade-off between the average secrecy
rate and sensing SNR under different system configurations.
By varying the weighting factor ws, the system transitions
from a communication-centric design (ws = 0) to a sensing-
centric design (ws = 1). The proposed DDPG-based joint
optimization consistently outperforms both random RIS and
no-RIS baselines across the entire trade-off region, confirming
the effectiveness of jointly optimizing UAV trajectories and
RIS phase shifts.

IV. CONCLUSION

This paper investigates a learning-based framework for RIS-
assisted UAV ISAC systems under adversarial interference. By
leveraging deep reinforcement learning, RIS phase shifts are
optimized to balance communication and sensing performance,
while secrecy is evaluated as a key performance indicator.

Simulation results demonstrate that the proposed method
achieves improved secrecy performance compared with RIS-
free and random RIS baselines, while effectively capturing the
trade-off between secrecy and sensing performance.
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