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Abstract

This paper presents SIGMA-Path, a cross-layer mobility planning framework for congestion avoidance in high-density
Flying Ad-hoc Networks (FANETS). To address the throughput collapse caused by the "CSMA Trap" and the hidden node
problem, the proposed approach is incorporated into the autonomous navigation pipeline for UAV swarm agents. The method
models interference-aware spatial intelligence and identifies optimal interference-minimized zones in real-time operating
modes. Each UAV agent computes a congestion tax and repulsive steering vectors and exchanges Reinforcement Learning (RL)
trust scores with neighboring relays, enabling proactive trajectory adjustment under strict connectivity constraints. The
proposed system supports reliable multi-hop data transmission while avoiding localized radio contention and perpetual MAC-
layer backoffs. Experimental results show a 17.34% improvement in connectivity availability and a 33.52 Kbps increase in
network throughput relative to naive greedy proximity policies, while maintaining a 12.91% reduction in end-to-end latency
across randomized geometric stress tests. Additional evaluations demonstrate a stable 110-meter separation compared with
baseline clustering, indicating that spatial decoupling significantly enhances swarm communication reliability in dense
deployment conditions.
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I. Introduction between relay clusters. Cross-layer Reinforcement

Learning (RL) integration creates a feedback loop,

Reliable communication serves as the fundamental allowing the mobility planner to proactively adjust

constraint for autonomous Unmanned Aerial Vehicle trajectories based on historical network reliability,
(UAV) swarm performance, particularly within Flying Ad- ensuring optimal swarm throughput.

hoc Networks (FANETs) where high mobility and multi-
hop relaying necessitate efficient Medium Access Control
(MAC) [1]. While Carrier Sense Multiple Access with I1. Method
Collision Avoidance (CSMA/CA) is standard, it suffers
from severe throughput collapse in high-density scenarios
as localized clustering triggers the hidden node problem
and perpetual MAC-layer backoffs. This creates a state
where effective coordination fails despite maintaining high
Signal-to-Interference-plus-Noise Ratio (SINR).

A. Macro-planning optimizes the global trajectory by
balancing travel efficiency with link reliability. This layer
uses a congestion tax to avoid crowded relay clusters and a
spacer penalty to maintain an ideal 110-meter separation.
By incorporating an RL trust score from historical
performance, the system identifies the most reliable multi-

Previous afiempts to mitigate these issues via hop route. This allows the drone to navigate the quiet

Reinforcement Learning (RL) often model network routing
as a Markov Decision Process (MDP) to ensure swarm
connectivity [2]. However, these models frequently adopt
suboptimal proximity-based policies that prioritize
physical distance for link estimation. This creates an
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periphery of the swatin, MmaximizZing wmrougnpu
proactively avoiding the high interference caused by
physical node contention.

J(u,v) = Wrat - Dist(u,v) + Weonn - [Qcong : q)space : :u'trust]
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Variable Definitions
« J(u,v): Total Link Cost (to minimize)
* Wiast: Weight for Travel Speed (Distance)

architectural paradox: by converging on high-signal-
strength locations, agents inadvertently maximize radio

contention and packet collisions, nullifying the benefits of * Weonn: Weight for Network Reliability
. . . 1 * Qcong: Congestion Tax (Penalty for crowding)
the per ceived link quallty. * Dypace: Spacer Penalty (Deviation from 110m)

— * Uiust: RL Trust Score (from Q-Values)

This research proposes SIGMA-Path, a spatial

decoupling framework for UAV mobility to resolve C°"geSti°“'\
congestion. It uses interference-aware spatial intelligence Congestion Tax Component:
with a mobility cost function prioritizing congestion Qcongestion = 1 + (0.5 * Neighbors) @ >

avoidance over distance. A repulsive vector steering
algorithm positions nodes in interference-minimized zones Fig. 1 Macro planner cost formula



B. Micro-steering acts as a real-time reactive mechanism
to maintain the optimal 110-meter separation from relay
nodes. Using a parabolic potential field formula, the
system generates repulsive forces when the drone is too
ce) and attractive forces when it

close (inducino interferen
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drifts too far (risking signal loss). This automated steering
ensures the UAV remains within the interference-free
periphery of the swarm throughout the flight. By
stabilizing the drone in this optimal zone, SIGMA-Path
effectively minimizes packet collisions and maximizes link
reliability.

e}
14U Guualiuny 101005 Wil

Micro-Steering: The Goldilocks Spacer
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Fig. 2 Micro-steering concept

The SIGMA-Path simulation utilizes a 500m x 500m

area, encompassing 10 Unmanned Aerial Vehicles (UAVs).

Communication parameters include QGeo routing[3],
CSMA/CA Medium Access Control (MAC), and Poisson
traffic generation. Relay mobility is modeled using a
Gauss-Markov process. The mission planner updates its
trajectory every 0.2 seconds, subject to a minimum
objective distance of 200 meters. The Geometric Stress
Test methodology employs randomized mission
i trained by this distance requirement. The
primary objective is to evaluate the planner's capacity for
path-finding: specifically, its ability to select a longer,
detoured route to maintain connectivity within the 120m
Signal-to-Interference-plus-Noise Ratio (SINR) reception
threshold, prioritizing sustained link quality over a shorter
path that would result in a communication discontinuity.

Performance Naive Greedy SIGMA-Path Improvement
Metric (Wconn=0.0) (Wconn=0.1) Delta
Packet Delivery o o
549 _ +1.38%
Ratio (PDR) 93.54% 94.92% 1.38%
Connectivity g 120 -

N .38% ) +17.349
Availability 58.38% 68.50% 17.34%
Network 558.54 Kbps 592.06 Kbps +33.52 Kbps
Throughput i P : P SRR
Average
End-to-End 52.13 ms 45.40 ms -12.91%
Latency
Relay Proximity 112.80 m 101.36 m Optimal Spacing
Path Efficiency 1.00 0.90 -10%

Fig. 3 Simulation Result

III. Conclusion

This research introduces SIGMA-Path, a cross-layer
mobility framework that successfully resolves the "CSMA
Trap" by prioritizing interference-aware spatial positioning
over simple proximity. Our results demonstrate that by
maintaining an optimal 110-meter separation via a hybrid
macro-micro planner, the system achieves a 17.34%
increase in connectivity and significant throughput gains
despite a marginal 10% decrease in path efficiency.

Ultimately, this study proves that autonomous UAV
swarms can eliminate MAC-layer congestion through
proactive spatial decoupiing, ensuring reiiabie muiti-hop
communication in high-density environments without
centralized control.
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