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Abstract—Software-Defined Networking (SDN) offers pro-
grammability and centralized control but faces persistent chal-
lenges from anomalies such as intrusion attempts, high-rate flows,
and protocol misuse. Traditional ML-based detectors can classify
anomalous traffic patterns but provide no interpretability [1]-[4].

This paper presents SDN-Xplain, a lightweight framework
that detects anomalies using machine learning models trained
on publicly available SDN traffic datasets and generates natural-
language explanations with a Large Language Model (LLM).

Although our implementation does not include a live SDN
controller or real-time topology, SDN-Xplain demonstrates a
clear proof of concept: combining ML prediction with LLM-
based reasoning significantly improves the interpretability of
anomaly alerts and supports human-centric network analysis.

Index Terms—Software-Defined Networking (SDN), machine
learning, Large Language Models (LLMs), network security,
SHAP

I. INTRODUCTION

Software-Defined Networking (SDN) decouples the control
and data planes, offering global visibility and centralized
management. This architectural shift, however, makes SDN
traffic analysis increasingly complex. Machine learning models
are widely used to detect anomalous or malicious flows [4]-
[6], yet they behave as black-box classifiers: they output a
label but provide no justification [7], [8]. Network operators
must interpret these alerts manually, which is inefficient and
error-prone.

Large Language Models (LLMs) provide an opportunity
to improve interpretability [9], [10]. By generating context-
aware explanations for detected anomalies, LLMs can bridge
the cognitive gap between automated detection and human
understanding. This paper introduces SDN-Xplain, a sim-
ple yet effective framework that focuses on two tasks: 1)
anomaly detection using ML models trained on SDN traffic
datasets, and 2) natural-language explanation of anomalies
using an LLM. Our implementation is dataset-driven rather
than deployed on a live SDN topology, but it demonstrates
that LLM-based reasoning can meaningfully enhance anomaly
interpretability even in offline or simulated analysis pipelines.

II. RELATED WORK

Existing approaches to network anomaly detection rely
heavily on machine learning classifiers [2], [4], [6] such as

Random Forest, Support Vector Machines, and gradient boost-
ing methods [1]. While these models achieve high accuracy,
their decision-making process remains opaque. Recent work
has explored explainable AI (XAI) techniques, particularly
SHAP (SHapley Additive exPlanations) values [7], [1 1], to
quantify feature contributions [!1]. However, raw SHAP val-
ues require domain expertise [12] to interpret, limiting their
practical utility for network operators.

The integration of LLMs for network security analysis is
an emerging area. Previous studies have used LLMs for log
analysis and threat intelligence [13], but few have combined
ML-based detection with LLM-generated explanations in a
unified framework [6], [9], [10], [13]. SDN-Xplain addresses
this gap by providing an end-to-end pipeline that transforms
technical ML outputs into actionable, human-readable insights.

III. PROPOSED FRAMEWORK DESIGN

SDN-Xplain is designed to be modular and adaptable. It
consists of three primary components: Preprocessing, Classi-
fication via XGBoost, and Explanation Generation.

A. System Architecture

As illustrated in Fig. 1, the pipeline begins with the in-
gestion of network flow records. Each record, containing 41
distinct features, undergoes numerical encoding before being
processed by the XGBoost classifier. Upon detection of an
anomaly, the SHAP module calculates the contribution of each
feature to the prediction. These contributions, along with the
predicted class and confidence score, are formatted into a
structured prompt for the LLM.

B. Anomaly Detection and XGBoost

We utilize XGBoost (Extreme Gradient Boosting), which
demonstrates superior performance in handling imbalanced
network security datasets [14]. The model is trained on the
KDD Cup 1999 dataset [15], encompassing 33 classes includ-
ing Denial of Service (DoS), Probing, Remote-to-Local (R2L),
and User-to-Root (U2R). XGBoost’s ability to model non-
linear interactions allows it to outperform traditional models
in both macro-F1 score (0.75) and inference speed (0.015s).
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Fig. 1. Overall SDN-Xplain pipeline: Integrating ML-based detection, SHAP
feature attribution, and LLM-driven explanation generation.

C. Explainability via SHAP and LLM

To demystify the XGBoost model, we employ the SHAP
TreeExplainer [11]. SHAP values assign each feature an im-
portance value by calculating its marginal contribution. SDN-
Xplain identifies the "Top-K" influential features and feeds
them into the LLM module.

The LLM module, powered by DeepSeek v3.2-exp, con-
sumes this data through a prompt containing technical seman-
tic meanings (e.g., mapping "count" to "number of connections
to the same host"). This enables the LLM to generate a
narrative explaining how specific features led to the detection
of an attack, such as a "portsweep".

IV. PERFORMANCE EVALUATION

A. Classification Results

SDN-Xplain was evaluated on 4,509 test samples from the
KDD Cup 1999 dataset, achieving an overall accuracy of
98.8% and a weighted Fl-score of 0.99. Table I details the
classification performance for selected attack categories.

TABLE 1
CLASSIFICATION PERFORMANCE FOR SELECTED CLASSES (TABLE II)

Attack Type | Precision | Recall | F1-Score | Support

normal 0.99 1.00 0.99 2,249

neptune 1.00 1.00 1.00 1,331

portsweep 0.96 0.99 0.97 74

satan 0.96 0.97 0.97 140

smurf 1.00 1.00 1.00 108

ipsweep 0.95 1.00 0.97 96

The model shows exceptional robustness in identifying
high-volume attacks like neptune. For minority classes like
portsweep, the model maintained high recall (0.99), ensuring
critical threats are not missed.

B. Qualitative Analysis of Explanations

For a portsweep anomaly, the framework identified
dst_host_srv_count and same_src_port_rate as primary con-
tributors. The LLM synthesized this: "The system detected a
portsweep attack with 99.8% confidence. This is driven by
an abnormal increase in services accessed on the destination

host from a single source port, characteristic of systematic
scanning." This allows operators to prioritize firewall updates
immediately.

V. CONCLUSION

SDN-Xplain successfully integrates XGBoost, SHAP, and
LLMs to create an explainable anomaly detection system.
By achieving 98.8% accuracy and providing human-centric
insights, it addresses the "black-box" challenge in network
security.
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