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Abstract—This work presents an ablation study on feature en-
gineering strategies for fairness-aware LEO direct-to-cell (DTC)
resource allocation. We systematically evaluate raw channel
processing, engineered features, and compressed representations
(classical 4D and quantum 2D bottlenecks). Surprisingly, raw
channels achieve 45% higher fairness (FDAU = 1.076) than com-
pressed methods (0.710-0.741), revealing a fundamental fairness-
compression trade-off where aggressive dimensionality reduction
destroys user correlation information critical for balanced rate
allocation.

Index Terms—direct-to-cell, fairness, quantum machine learn-
ing, resource allocation, RSMA

I. INTRODUCTION

LEO satellite DTC networks enable ubiquitous smartphone
connectivity without terrestrial infrastructure [1]. However,
dense mega-constellations introduce severe inter-satellite in-
terference, while rapid user mobility and heterogeneous traffic
demands complicate fair resource allocation. Traditional opti-
mization methods exhibit prohibitive computational complex-
ity unsuitable for real-time satellite operations [2].

RSMA offers robust interference management through
common-private stream splitting [3]], while spatial-temporal
(ST) extensions exploit Doppler diversity in mobile scenar-
ios [2]. However, existing fairness metrics like capacity-
demand gap penalize oversupply and under-supply symmet-
rically, obscuring meaningful efficiency-fairness tradeoffs [4].

Quantum machine learning demonstrates potential for wire-
less optimization through enhanced representational capac-
ity [5]. Recent variational quantum circuits achieve strong
performance in high-dimensional control tasks [[6], yet lack
integration with fairness-aware resource allocation for satellite
networks.

This work presents an ablation study on ST-RSMA for LEO
DTC networks with contributions: (1) A FDAU metric with
asymmetric logarithmic structure, (2) Systematic evaluation
revealing raw channels outperform compressed methods by
45%, and (3) Analysis identifying fairness-compression trade-
offs where dimensionality reduction degrades user correlation
preservation.

II. SYSTEM MODEL AND Q-STPR FRAMEWORK
A. ST-RSMA with FDAU Metric

A LEO satellite at altitude h = 600 km with N; = 4
antennas serves K = 4 DTC ground users (each with M = 2
antennas) over 1’ = 2 time slots. The ST channel to user k

at slot ¢ incorporates 3GPP NTN path loss £, and Doppler
shifts:

Hk(t) = \/@Gk(t) ® eXp(jQﬂ'fD,ktAt), (1)

where fp j = v f./c with user velocity vy ~ 1[0, 120] km/h
at carrier frequency f. = 20 GHz.

RSMA transmission combines common stream s.(t) and
private streams {s(t)}:

K
x(t) = fo(t)sc(t) + > £F (t)si (1), )
k=1
subject to  power  constraint %Zle(ﬂfc(t)HQ +

2k Hfék)(t)n% < Ppax and minimum rate Ry, > Ry, = 1.0
bps/Hz Vk. The achievable rate per user:

T
Ry, = %Z (R;gt) + log, (1 + ’Yp,k(t))) : 3)

t=1

For heterogeneous demands Dy, ~ U[2, 6] bps/Hz (challeng-
ing scenario), FDAU is proposed:

1 K Ry,
FDAU = — I 1+ —1. 4
K;og( +Dk) @

This logarithmic structure provides diminishing returns for
oversupply while heavily penalizing under-supply, enabling
efficient surplus allocation unlike symmetric CD-gap metrics.

B. Q-STPR Architecture

Fig. [1| illustrates Q-STPR’s three-stage pipeline. Stage 1
extracts D = 38 dimensional features comprising spatial char-
acteristics (channel strength, correlations, phase relationships),
temporal dynamics (magnitude variation, phase change), and
Doppler statistics (shifts, velocity proxies).

Stage 2 employs a 2-qubit VQC for ultra-compact fea-
ture compression. After Hadamard initialization for superpo-
sition, feature encoding via x = tanh(We,.¢) followed by
R, rotations creates input-dependent quantum states. Linear
Controlled-Z gates induce entanglement between qubits. A
variational layer with parametrized R, and R, rotations yields
4 trainable quantum parameters (2 qubits x 2 rotation types).
Pauli-Z measurements extract 2-dimensional quantum fea-
tures, achieving 19:1 compression ratio (38D—2D), expanded
to 32-dimensional policy 7 = tanh(Wgecq + bgec)-
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Figure 1: Q-STPR framework. Top: LEO satellite serving
K = 4 DTC users. Bottom: Three-stage architecture: (1) ST
feature extraction (38D), (2) 2-qubit VQC (4 parameters, 19:1
compression), (3) ST precoder generation.

Stage 3 maps the policy to space-time precoders
{fc(t),f,gk) (t)} via time-specific decoders with power nor-
malization. The model maximizes expected FDAU subject to
power and minimum rate constraints through penalty-based
policy gradient optimization:

L(0) = —Eg,p [FDAU — Apow Poow — AminPain] , (5

where Ppow = max(0, Py Phax) and Pppn =
max (0, Ry, — ming Ry) are constraint violation penalties.

III. EXPERIMENTAL RESULTS

LEO satellite parameters follow 3GPP NTN standards with
Prax = 30 dBm, By, = 400 MHz, noise power o2 = —90
dBm, yielding SNR of 10-20 dB. User velocities span 0-
120 km/h with heterogeneous demands Dy, ~ U[2, 6] bps/Hz.
Performance evaluation uses 100 test samples.

Fig. 2| shows training convergence across four methods: C-
STPR (raw channels), CF-STPR (engineered features), CFB-
STPR (classical 4D bottleneck), and Q-STPR (quantum 2D
bottleneck). All methods converge within 10 episodes with
Q-STPR maintaining lowest variance.

Table [l reveals raw channel processing (C-STPR) achieves
highest FDAU (1.076), outperforming compressed methods
by 45%. Feature engineering degrades fairness by —31.1%
(C—CF) through information aggregation. Further compres-
sion provides no benefit: classical bottleneck (CF—CFB)
shows —1.6% loss, while quantum compression (CFB—Q)
yields additional —2.6% degradation. This demonstrates that
fairness requires preserving user-specific correlations, which
compression destroys. C-STPR also achieves highest sum rate
(21.14 bps/Hz), suggesting raw channels enable both capacity
and fairness.

IV. CONCLUSION

This ablation study reveals a fundamental fairness-
compression trade-off in LEO DTC resource allocation: raw
channels achieve 45% higher fairness than compressed meth-
ods by preserving user-specific correlations. Feature engineer-
ing and compression (classical or quantum) degrade fairness
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Figure 2: Training convergence: all learning methods achieve
similar convergence speed, with Q-STPR maintaining lowest
variance.

Table I: Ablation Study: Feature Engineering Impact

Method Bottleneck Ratio FDAU Sum Rate
(bps/Hz)
C-STPR (Raw) None 1.0 1.076 21.14
CF-STPR (Feat) None 1.7  0.741 6.97
CFB-STPR (Class) 4D 9.5 0.729 6.79
Q-STPR (Quant) 2D 19.0 0.710 6.85

A(C—CF): —31.1% FDAU; A(CF—CFB): —1.6%; A(CFB—Q): —2.6%

BN: bottleneck dimension; Ratio: compression ratio (input/bottleneck)

through information loss. Future work includes hybrid archi-
tectures and higher-qubit quantum circuits (4-8 qubits) for
improved compression-fairness balance.
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