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Abstract—This work presents an ablation study on feature en-
gineering strategies for fairness-aware LEO direct-to-cell (DTC)
resource allocation. We systematically evaluate raw channel
processing, engineered features, and compressed representations
(classical 4D and quantum 2D bottlenecks). Surprisingly, raw
channels achieve 45% higher fairness (FDAU = 1.076) than com-
pressed methods (0.710–0.741), revealing a fundamental fairness-
compression trade-off where aggressive dimensionality reduction
destroys user correlation information critical for balanced rate
allocation.

Index Terms—direct-to-cell, fairness, quantum machine learn-
ing, resource allocation, RSMA

I. INTRODUCTION

LEO satellite DTC networks enable ubiquitous smartphone
connectivity without terrestrial infrastructure [1]. However,
dense mega-constellations introduce severe inter-satellite in-
terference, while rapid user mobility and heterogeneous traffic
demands complicate fair resource allocation. Traditional opti-
mization methods exhibit prohibitive computational complex-
ity unsuitable for real-time satellite operations [2].

RSMA offers robust interference management through
common-private stream splitting [3], while spatial-temporal
(ST) extensions exploit Doppler diversity in mobile scenar-
ios [2]. However, existing fairness metrics like capacity-
demand gap penalize oversupply and under-supply symmet-
rically, obscuring meaningful efficiency-fairness tradeoffs [4].

Quantum machine learning demonstrates potential for wire-
less optimization through enhanced representational capac-
ity [5]. Recent variational quantum circuits achieve strong
performance in high-dimensional control tasks [6], yet lack
integration with fairness-aware resource allocation for satellite
networks.

This work presents an ablation study on ST-RSMA for LEO
DTC networks with contributions: (1) A FDAU metric with
asymmetric logarithmic structure, (2) Systematic evaluation
revealing raw channels outperform compressed methods by
45%, and (3) Analysis identifying fairness-compression trade-
offs where dimensionality reduction degrades user correlation
preservation.

II. SYSTEM MODEL AND Q-STPR FRAMEWORK

A. ST-RSMA with FDAU Metric

A LEO satellite at altitude h = 600 km with Nt = 4
antennas serves K = 4 DTC ground users (each with M = 2
antennas) over T = 2 time slots. The ST channel to user k

at slot t incorporates 3GPP NTN path loss βk and Doppler
shifts:

Hk(t) =
√

βk Gk(t)⊙ exp(j2πfD,kt∆t), (1)

where fD,k = vkfc/c with user velocity vk ∼ U [0, 120] km/h
at carrier frequency fc = 20 GHz.

RSMA transmission combines common stream sc(t) and
private streams {sk(t)}:

x(t) = fc(t)sc(t) +

K∑
k=1

f (k)p (t)sk(t), (2)

subject to power constraint 1
T

∑T
t=1(∥fc(t)∥2 +∑

k ∥f
(k)
p (t)∥2) ≤ Pmax and minimum rate Rk ≥ Rmin = 1.0

bps/Hz ∀k. The achievable rate per user:

Rk =
1

T

T∑
t=1

(
Rc(t)

K
+ log2(1 + γp,k(t))

)
. (3)

For heterogeneous demands Dk ∼ U [2, 6] bps/Hz (challeng-
ing scenario), FDAU is proposed:

FDAU =
1

K

K∑
k=1

log

(
1 +

Rk

Dk

)
. (4)

This logarithmic structure provides diminishing returns for
oversupply while heavily penalizing under-supply, enabling
efficient surplus allocation unlike symmetric CD-gap metrics.

B. Q-STPR Architecture

Fig. 1 illustrates Q-STPR’s three-stage pipeline. Stage 1
extracts D = 38 dimensional features comprising spatial char-
acteristics (channel strength, correlations, phase relationships),
temporal dynamics (magnitude variation, phase change), and
Doppler statistics (shifts, velocity proxies).

Stage 2 employs a 2-qubit VQC for ultra-compact fea-
ture compression. After Hadamard initialization for superpo-
sition, feature encoding via x = tanh(Wencϕ) followed by
Ry rotations creates input-dependent quantum states. Linear
Controlled-Z gates induce entanglement between qubits. A
variational layer with parametrized Ry and Rz rotations yields
4 trainable quantum parameters (2 qubits × 2 rotation types).
Pauli-Z measurements extract 2-dimensional quantum fea-
tures, achieving 19:1 compression ratio (38D→2D), expanded
to 32-dimensional policy π = tanh(Wdecq+ bdec).



2

STAGE 1 STAGE 3
Classical Feature Extraction

Spatial Features

Temporal Features

ST

Classical DNN

ST Precoder Generation

Policy

Network

Output

Common
Precoder

Private
Precoders

Precoder Decoder

ST Feature

Vector
Quantum

Optimized

Policy

Classical Processing

Quantum Processing

Output Precoders

Forward Pass
RL Feedback

Reward:

Policy Gradient Optimizer updates

DTC

Users

Feature dimension

(e.g. magnitude, phase)

(e.g. Doppler effects)

LEO Sat

LEO Sat

ST

Space-Time Channel

STAGE 2
Quantum Policy Mapping

VQC on Quantum Simulator

Trainable Parameters Layer MeasurementSuperposition & Encode

Figure 1: Q-STPR framework. Top: LEO satellite serving
K = 4 DTC users. Bottom: Three-stage architecture: (1) ST
feature extraction (38D), (2) 2-qubit VQC (4 parameters, 19:1
compression), (3) ST precoder generation.

Stage 3 maps the policy to space-time precoders
{fc(t), f (k)p (t)} via time-specific decoders with power nor-
malization. The model maximizes expected FDAU subject to
power and minimum rate constraints through penalty-based
policy gradient optimization:

L(θ) = −EH,D [FDAU − λpowPpow − λminPmin] , (5)

where Ppow = max(0, Pavg − Pmax) and Pmin =
max(0, Rmin −mink Rk) are constraint violation penalties.

III. EXPERIMENTAL RESULTS

LEO satellite parameters follow 3GPP NTN standards with
Pmax = 30 dBm, Bbw = 400 MHz, noise power σ2 = −90
dBm, yielding SNR of 10–20 dB. User velocities span 0–
120 km/h with heterogeneous demands Dk ∼ U [2, 6] bps/Hz.
Performance evaluation uses 100 test samples.

Fig. 2 shows training convergence across four methods: C-
STPR (raw channels), CF-STPR (engineered features), CFB-
STPR (classical 4D bottleneck), and Q-STPR (quantum 2D
bottleneck). All methods converge within 10 episodes with
Q-STPR maintaining lowest variance.

Table I reveals raw channel processing (C-STPR) achieves
highest FDAU (1.076), outperforming compressed methods
by 45%. Feature engineering degrades fairness by −31.1%
(C→CF) through information aggregation. Further compres-
sion provides no benefit: classical bottleneck (CF→CFB)
shows −1.6% loss, while quantum compression (CFB→Q)
yields additional −2.6% degradation. This demonstrates that
fairness requires preserving user-specific correlations, which
compression destroys. C-STPR also achieves highest sum rate
(21.14 bps/Hz), suggesting raw channels enable both capacity
and fairness.

IV. CONCLUSION

This ablation study reveals a fundamental fairness-
compression trade-off in LEO DTC resource allocation: raw
channels achieve 45% higher fairness than compressed meth-
ods by preserving user-specific correlations. Feature engineer-
ing and compression (classical or quantum) degrade fairness
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Figure 2: Training convergence: all learning methods achieve
similar convergence speed, with Q-STPR maintaining lowest
variance.

Table I: Ablation Study: Feature Engineering Impact

Method Bottleneck Ratio FDAU Sum Rate
(bps/Hz)

C-STPR (Raw) None 1.0 1.076 21.14
CF-STPR (Feat) None 1.7 0.741 6.97
CFB-STPR (Class) 4D 9.5 0.729 6.79
Q-STPR (Quant) 2D 19.0 0.710 6.85

∆(C→CF): −31.1% FDAU; ∆(CF→CFB): −1.6%; ∆(CFB→Q): −2.6%

BN: bottleneck dimension; Ratio: compression ratio (input/bottleneck)

through information loss. Future work includes hybrid archi-
tectures and higher-qubit quantum circuits (4–8 qubits) for
improved compression-fairness balance.
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