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Abstract 

 
Most existing state-of-health (SOH) estimation methods are largely empirical, offering limited insight into the actual 

electrochemical processes governing battery degradation, whether they rely on equivalent-circuit models or purely 

data-driven techniques. This lack of physical interpretability remains a central challenge in reliable SOH prediction. 

Physics-Informed Neural Networks (PINNs) address this gap by embedding fundamental electrochemical laws 

directly into the learning process, ensuring that predictions remain physically meaningful. In this work, we employ a 

PINN-based framework that integrates a mechanistic degradation model capturing four dominant aging pathways: 

solid-electrolyte interphase (SEI) growth, lithium plating, loss of active material (LAM), and other secondary 

degradation mechanisms. By explicitly linking these physical processes to capacity fade, the proposed approach 

estimates capacity loss over the entire cycle life in a consistent and interpretable manner. Under constant C-rate 

cycling conditions, the model achieves an RMSE below 0.05, outperforming conventional empirical methods while 

providing clearer physical insight, highlighting the critical role of physics-guided learning in improving SOH 

prediction. 

 

Ⅰ. Introduction 

Lithium-ion batteries are the backbone of modern 

technology, powering everything from smartphones 

and laptops to electric vehicles, spacecraft, drones, 

and large-scale energy storage systems. Their 

widespread adoption stems from a unique combination 

of long cycle life, low weight, and high energy density. 

However, different applications impose very different 

demands. Engineers working with chemistries such as 

LFP, NMC, and NCA must constantly trade off energy 

density, safety, cost, and durability. For example, 

drones favor lightweight cells with high specific power, 

stationary storage systems prioritize stability and 

longevity, and EVs demand long driving range along 

with fast-charging capability. Across these use cases, 

batteries are exposed to harsh operating conditions 

such as extreme temperatures, high C-rate charging 

and discharging, mechanical vibrations, and strict 

safety constraints.  

Because of these diverse operating conditions, 

battery aging pathways strongly depend on both 

chemistry and usage. LFP cells, for instance, are 

generally more thermally stable but can degrade 

rapidly under overcharge, while NMC cells may suffer 

from structural instability at high voltages. Accurately 

capturing such complex, chemistry-specific 

degradation behavior is essential for reliable cycle-

life prediction and performance optimization. Modeling 

approaches span a broad spectrum. Physics-based 

electrochemical models and mechanistic degradation 

frameworks, such as P2D models, provide deep insight 

into processes like loss of active material, SEI 

evolution, lithium plating, and stress-induced fracture 

[1], but they are computationally expensive and rely 

on well-identified parameters. On the other hand, 

data-driven methods—including SVMs, Gaussian 

processes, random forests, and deep neural 

networks—can achieve strong predictive accuracy 

using voltage and current data, yet often struggle 

outside their training domain and lack physical 

interpretability. 

 

Fig. 1. The PINN framework combines experimental data 

with DFN-based thermal-electrochemical physics. 

Hybrid approaches, especially Physics-Informed 

Neural Networks (PINNs), bridge this gap by 

embedding physical laws or constraints directly into 

the learning process, enabling data-efficient training, 

improved generalization, and even the identification of 

dominant degradation modes without requiring 

extensive end-of-life labels. 



In this study, we take a hybrid approach as shown in 

Fig. 1, estimating capacity fade across cycle life by 

integrating key degradation pathways—SEI growth, 

lithium plating, LAM, and auxiliary side reactions—into 

a PINN framework. This aims to produce reliable, 

interpretable SOH predictions across chemistries and 

operating situations by striking a compromise between 

mechanistic knowledge and data efficiency. 

Ⅱ. Method 

We model long-term capacity fade using a reduced, 

DFN-inspired mechanistic core embedded within a 

Physics-Informed Neural Network (PINN). Rather than 

solving the full set of electrochemical PDEs during 

inference, the framework evolves three physically 

meaningful degradation states on a per-cycle basis 

SEI layer thickness L, plated-Li thickness δ Li, and the 

remaining active-material fraction fact. Their dynamics 

are written as ODEs that serve as PINN residual 

constraints as shown in Equation [1].  

max
( ) SEI Li act

wet eff

L fdQ
k A A

dn n n n




  
= − − − −

  
 () 

The neural backbone takes cycle index and 

operating/context features (e.g., C-rate, temperature) 

and predicts the latent states and capacity, while the 

loss combines data misfit with the ODE residuals. 

Ⅲ. Results and discussion 

Batch 1 (2C charge / 1C discharge, 7 cells) Across 

400 cycles, the PINN maintains consistently low error 

below 0.03 Ah for all cells (0.021 ± 0.006 Ah), 

whereas the physics-only model gradually drifts to 

0.30– 0.38 Ah and the purely data-driven NN reaches 

0.13– 0.56 Ah. The parameters inferred by the PINN 

suggest moderate crack growth(Kcr = 3.9×10⁻ ²⁰  

m²/s), limited lithium plating (i0,pl = 4.3×10⁻ ⁹  

A·m⁻ ²), and comparatively higher solid-phase 

diffusivity(Dsol = 9.3×10⁻ ²² m²/s consistent with 

stable aging behavior Fig [2a]. 

Batch 2 and Batch 3 (3C charge / 1C discharge, 15 

cells each). With faster charging, degradation 

accelerates and the weaknesses of baseline models 

become more pronounced: the NN exhibits large error 

spikes exceeding 1 Ah for several cells, while the 

physics model reaches about 0.18 Ah error. In 

contrast, the PINN remains robust, keeping errors 

within 0.05 Ah (≈  0.026 ± 0.010 Ah). The learned 

parameters indicate that the dominant change under 

higher C-rates is enhanced lithium plating, reflected 

by a ~40% increase in (i0,pl = 6.1×10⁻ ⁹  A·m⁻ ² ) 

while crack growth remains nearly unchanged and 

solid diffusivity slightly decreases( Dsol = 7.8×10⁻ ²² 

m²/s ) as shown in Fig [2b-c]. 

Ⅲ. Conclusion 

For NCM cells, our PINN forecasts capacity fade 

with RMSE < 0.05 Ah—over an order of magnitude 

lower than both a calibrated physics model and a 

black-box neural network. A lightweight, cell-specific 

encoder, conditioned only on the first 10 cycles, infers 

key kinetics (e.g. plating exchange current, crack-

growth rate) without manual retuning, and these 

estimates remain consistent across varied NCM 

formulations. 

  

(a) Capacity prediction of two 2 C NMC cells; PINN matches experiment, 

baselines deviate late-cycle. 

  
(b) Capacity-retention curves for two 3 C NMC cells; PINN follows data, 

physics and NN diverge. 

  
(c)  Capacity prediction of two X C {X: 0.5, 1, 2, 3, 5} of fully 

discharged cells. 

Fig. 2. PINN capacity predictions for six NMC cells under 

different cycling protocols. 

This mechanistic fidelity enables real-time health 

monitoring: BMS digital twins can use the model to 

adapt charging profiles, thermal control, and 

maintenance scheduling on the fly. In sum, minimal 

early-cycle data plus embedded physics yields 

accurate, generalizable predictions and actionable 

diagnostics for NCM durability. 
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