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Abstract

Most existing state—of-health (SOH) estimation methods are largely empirical, offering limited insight into the actual
electrochemical processes governing battery degradation, whether they rely on equivalent-circuit models or purely
data—driven techniques. This lack of physical interpretability remains a central challenge in reliable SOH prediction.
Physics-Informed Neural Networks (PINNs) address this gap by embedding fundamental electrochemical laws
directly into the learning process, ensuring that predictions remain physically meaningful. In this work, we employ a
PINN-based framework that integrates a mechanistic degradation model capturing four dominant aging pathways:
solid-electrolyte interphase (SEI) growth, lithium plating, loss of active material (LAM), and other secondary
degradation mechanisms. By explicitly linking these physical processes to capacity fade, the proposed approach
estimates capacity loss over the entire cycle life in a consistent and interpretable manner. Under constant C-rate
cycling conditions, the model achieves an RMSE below 0.05, outperforming conventional empirical methods while
providing clearer physical insight, highlighting the critical role of physics—guided learning in improving SOH
prediction.

evolution, lithium plating, and stress-induced fracture
[1], but they are computationally expensive and rely
on well-identified parameters. On the other hand,
data—-driven methods—including SVMs, Gaussian
processes, random forests, and deep neural
networks—can achieve strong predictive accuracy
using voltage and current data, yet often struggle
outside their training domain and lack physical
interpretability.

I . Introduction

Lithium-ion batteries are the backbone of modern
technology, powering everything from smartphones
and laptops to electric vehicles, spacecraft, drones,
and large-scale energy storage systems. Their
widespread adoption stems from a unique combination
of long cycle life, low weight, and high energy density.
However, different applications impose very different
demands. Engineers working with chemistries such as
LFP, NMC, and NCA must constantly trade off energy
density, safety, cost, and durability. For example,
drones favor lightweight cells with high specific power,
stationary storage systems prioritize stability and
longevity, and EVs demand long driving range along
with fast—charging capability. Across these use cases,

emperature 3 w.n1u
ar
Py = MelT =T+ Qg

Data FNN Architecture Loss terms

. . .. ) _ JL ==
batteries are exposed to harsh operating conditions s Expermental 7 Liotal = —
1 : e Umhadda B, ML rediction using PINN |
such as extreme temperatures, high C-rate charging i ) iLdata
. . . . . . ! | ” . B 1 d
and discharging, mechanical vibrations, and strict i T Bt B8
. i “f\ \ e )\L ;o
safety constraints. 1 ! phphysics
\ i Parameters of
\ \‘ Coupled \¢ +
. . .. ! 1 Differential : Lo
Because of these diverse operating conditions, 3 1 | adon AicLic
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chemistry and usage. LFP cells, for instance, are
generally more thermally stable but can degrade with DFN-based thermal-electrochemical physics.

rapidly under overcharge, while NMC cells may suffer Hybrid approaches, especially Physics-Informed
from structural instability at high voltages. Accurately Neural Networks (PINNs), bridge this gap by
capturing such complex, chemistry-specific
degradation behavior is essential for reliable cycle-
life prediction and performance optimization. Modeling
approaches span a broad spectrum. Physics—based
electrochemical models and mechanistic degradation
frameworks, such as P2D models, provide deep insight
into processes like loss of active material, SEI

Fig. 1. The PINN framework combines experimental data

embedding physical laws or constraints directly into
the learning process, enabling data—efficient training,
improved generalization, and even the identification of
dominant degradation modes without requiring
extensive end—of-life labels.



In this study, we take a hybrid approach as shown in
Fig. 1, estimating capacity fade across cycle life by
integrating key degradation pathways—SEI growth,
lithium plating, LAM, and auxiliary side reactions—into
a PINN framework. This aims to produce reliable,
interpretable SOH predictions across chemistries and
operating situations by striking a compromise between
mechanistic knowledge and data efficiency.

II. Method

We model long—term capacity fade using a reduced,
DFN-inspired mechanistic core embedded within a
Physics—Informed Neural Network (PINN). Rather than
solving the full set of electrochemical PDEs during
inference, the framework evolves three physically
meaningful degradation states on a per—cycle basis
SEI layer thickness L, plated-Li thickness & ¢/, and the
remaining active—-material fraction fze. Their dynamics
are written as ODEs that serve as PINN residual
constraints as shown in Equation [1].
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The neural backbone takes cycle index and

operating/context features (e.g., C-rate, temperature)
and predicts the latent states and capacity, while the
loss combines data misfit with the ODE residuals.

II. Results and discussion

Batch 1 (2C charge / 1C discharge, 7 cells) Across
400 cycles, the PINN maintains consistently low error
below 0.03 Ah for all cells (0.021 + 0.006 Ah),
whereas the physics—-only model gradually drifts to
0.30- 0.38 Ah and the purely data—driven NN reaches
0.13- 0.56 Ah. The parameters inferred by the PINN
suggest moderate crack growth(Ke = 3.9x10° 2°

m?/s), limited lithium plating (o = 4.3x10° °
A'm~ 2), and comparatively higher solid-phase
diffusivity(Dsos 9.3x10" 22 m?/s consistent with

stable aging behavior Fig [2a].

Batch 2 and Batch 3 (3C charge / 1C discharge, 15
cells each). With faster charging, degradation
accelerates and the weaknesses of baseline models
become more pronounced: the NN exhibits large error
spikes exceeding 1 Ah for several cells, while the
physics model reaches about 0.18 Ah error. In
contrast, the PINN remains robust, keeping errors
within 0.05 Ah (= 0.026 + 0.010 Ah). The learned
parameters indicate that the dominant change under
higher C-rates is enhanced lithium plating, reflected
by a ~40% increase in (o = 6.1x10° °* A'm 2 )
while crack growth remains nearly unchanged and
solid diffusivity slightly decreases( Dsoy = 7.8x10" 22
m2/s ) as shown in Fig [2b-c].

II. Conclusion

For NCM cells, our PINN forecasts capacity fade
with RMSE < 0.05 Ah—over an order of magnitude

lower than both a calibrated physics model and a
black—-box neural network. A lightweight, cell-specific
encoder, conditioned only on the first 10 cycles, infers
key kinetics (e.g. plating exchange current, crack-—
growth rate) without manual retuning, and these
estimates remain consistent across varied NCM
formulations.
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(a) Capacity prediction of two 2 C NMC cells; PINN matches experiment,
baselines deviate late-cycle.
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(b) Capacity-retention curves for two 3 C NMC cells; PINN follows data,
physics and NN diverge.
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(c) Capacity prediction of two X C {X: 0.5, 1, 2, 3, 5} of fully
discharged cells.

Fig. 2. PINN capacity predictions for six NMC cells under
different cycling protocols.

This mechanistic fidelity enables real-time health
monitoring: BMS digital twins can use the model to
adapt charging profiles, thermal control, and
maintenance scheduling on the fly. In sum, minimal
early-cycle data plus embedded physics yields
accurate, generalizable predictions and actionable
diagnostics for NCM durability.
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