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Abstract 

 
Accurate and interpretable prediction of lithium-ion battery (LiB) degradation is critical for ensuring 

system safety and reliability. This study presents a probabilistic deep learning framework for the joint estimation of 

state of health (SOH) and remaining useful life (RUL), leveraging Monte Carlo Dropout to quantify predictive 

uncertainty. The model is trained on engineered cycle-level features, and by framing the task as a multi-output 

regression problem, the model learns to infer degradation from both long-term trends and short-term fluctuations. 

The proposed approach reduces SOH RMSE to as low as 0.0098 and RUL RMSE to 4.5 cycles, outperforming a 

deterministic baseline across all test cases. The uncertainty estimates are well-calibrated, with prediction interval 

coverage probability exceeding 0.94 for RUL and reaching 1.00 for SOH, while maintaining narrow sharpness values.  

 

Ⅰ. Introduction 

Traditional state-of-health (SOH) and remaining 

useful life (RUL) estimation methods for LiBs rely on 

physics-based electrochemical and circuit models, 

which provide interpretability but require detailed 

internal parameters and high computational cost. To 

address these limitations, data-driven approaches 

leverage measurable signals like voltage, current, and 

temperature. Machine learning (ML) methods have 

shown strong performance, with hybrids further 

improving adaptability and accuracy [1]. Despite these 

advances, challenges remain in ML methods. Many 

models are deterministic, offering only point estimates 

without confidence measures. Generalization is also an 

issue, as models often perform well within a dataset 

but fail when tested on new batteries. Moreover, SOH 

and RUL are typically treated as separate tasks, 

leading to fragmented insights and reduced efficiency. 

While co-estimation methods are emerging, few 

integrate uncertainty quantification, leaving a gap in 

achieving robust and reliable predictions. 

This study introduces a probabilistic deep learning 

framework using Monte Carlo Dropout-based 

feedforward neural network (FFNN) for joint SOH and 

RUL estimation. Trained on cycle-level data with 

engineered features, it delivers both predictions and 

calibrated uncertainties. 

Ⅱ. Dataset Analysis and Preprocessing 

Datasets were obtained from the CALCE [2] 

repository and contain cycle-level measurements of 

1.1 Ah batteries. For SOH and RUL co-estimation, raw 

measurements of voltage, current, and capacity were 

engineered into features capturing long-term trends 

and local variability. Engineered features include 

delta_Q, which measures cycle-to-cycle capacity 

change, cycle_frac, the normalized cycle index, 

rolling_Q, a smoothed capacity measure, and short-

term voltage and current volatility captured by V_std 

and I_std. Pearson correlation analysis was used to 

confirm their predictive value.  

 

Fig. 1. Model architecture of the MC-Dropout FFNN 

for Probabilistic Co-Estimation. 

Ⅲ. Methodology and Results 

The FFNN in this study is a fully connected network 

that takes cycle-level inputs and outputs two scalars 

for SOH and RUL. It consists of an input layer, several 

hidden layers with ReLU activations, and a final linear 

layer. Training uses backpropagation with the Adam 

optimizer, where predictions are computed in a 

forward pass, loss is calculated, gradients are derived, 

and weights are updated until convergence [3]. The 

proposed model extends this baseline by adding 

dropout layers after each hidden layer, kept active 

during both training and testing. Fig. 1 shows the 



corresponding architecture of the proposed model. 

This Monte Carlo Dropout strategy approximates 

Bayesian inference by repeatedly sampling the 

network to generate a distribution of predictions. To 

evaluate the quality of the uncertainty estimates from 

MC-Dropout, two metrics are employed. Prediction 

Interval Coverage Probability (PICP), which measures 

how often true values fall within 95% prediction 

intervals, and Sharpness, which captures the average 

width of those intervals.  
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Fig. 2. SOH prediction with uncertainty; (a) Battery 1 

(b) Battery 2 (c) Battery 3 

The MC-Dropout model was evaluated against a 

baseline FFNN on three test batteries using MAE, 

RMSE, and R² for SOH and RUL. It consistently 

outperformed the baseline, reducing average SOH 

MAE from 0.0165 to 0.0108 and RUL MAE from 24.05 

to 8.37 cycles, with R² values above 0.99 across all 

cases. Beyond accuracy, the model produced sharp 

and well-calibrated uncertainty estimates. SOH 

prediction intervals captured all true values with 

average widths below 0.17, while RUL intervals 

achieved PICP values of 0.94-1.00 and widened 

appropriately as batteries neared end-of-life. Fig. 2 

shows the SOH estimation results, and Fig. 3 shows 

the RUL estimation results for the three test datasets. 

 

IV. Conclusion 

This study introduces a probabilistic deep learning 

approach for jointly estimating SOH and RUL of 

lithium-ion batteries using MC-Dropout feedforward 

neural networks. Formulated as a multi-output 

regression task, the model generates simultaneous 

predictions and quantifies uncertainty through Monte 

Carlo sampling. Cycle-level datasets were used with a 

cross-battery evaluation and engineered features 

captured degradation patterns. Compared with a 

baseline FFNN, the MC-Dropout model delivered 

substantial gains across three test batteries, lowering 

SOH RMSE and RUL RMSE significantly. It also 

produced well-calibrated uncertainty, with SOH PICP 

reaching 1.000 and RUL PICP ranging from 0.940 to 

1.000 while maintaining sharpness below 131 cycles. 
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Fig. 3. RUL prediction with uncertainty; (a) Battery 1 

(b) Battery 2 (c) Battery 3 
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