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Abstract

Accurate and interpretable prediction of lithium-ion battery (LiB) degradation is critical for ensuring
system safety and reliability. This study presents a probabilistic deep learning framework for the joint estimation of
state of health (SOH) and remaining useful life (RUL), leveraging Monte Carlo Dropout to quantify predictive
uncertainty. The model is trained on engineered cycle-level features, and by framing the task as a multi—output
regression problem, the model learns to infer degradation from both long—term trends and short—-term fluctuations.
The proposed approach reduces SOH RMSE to as low as 0.0098 and RUL RMSE to 4.5 cycles, outperforming a
deterministic baseline across all test cases. The uncertainty estimates are well-calibrated, with prediction interval
coverage probability exceeding 0.94 for RUL and reaching 1.00 for SOH, while maintaining narrow sharpness values.

I . Introduction

Traditional state-of-health (SOH) and remaining
useful life (RUL) estimation methods for LiBs rely on
physics-based electrochemical and circuit models,
which provide interpretability but require detailed
internal parameters and high computational cost. To
address these limitations, data—driven approaches
leverage measurable signals like voltage, current, and
temperature. Machine learning (ML) methods have
shown strong performance, with hybrids further
improving adaptability and accuracy [1]. Despite these
advances, challenges remain in ML methods. Many
models are deterministic, offering only point estimates
without confidence measures. Generalization is also an
issue, as models often perform well within a dataset
but fail when tested on new batteries. Moreover, SOH
and RUL are typically treated as separate tasks,
leading to fragmented insights and reduced efficiency.
While co-estimation methods are emerging, few
integrate uncertainty quantification, leaving a gap in
achieving robust and reliable predictions.

This study introduces a probabilistic deep learning
framework using Monte Carlo Dropout-based
feedforward neural network (FFNN) for joint SOH and
RUL estimation. Trained on cycle-level data with
engineered features, it delivers both predictions and
calibrated uncertainties.

II. Dataset Analysis and Preprocessing

Datasets were obtained from the CALCE [2]
repository and contain cycle-level measurements of
1.1 Ah batteries. For SOH and RUL co-estimation, raw
measurements of voltage, current, and capacity were
engineered into features capturing long-term trends
and local variability. Engineered features include
delta_Q, which measures cycle-to-cycle capacity
change, cycle_frac, the normalized cycle index,

rolling_Q, a smoothed capacity measure, and short—
term voltage and current volatility captured by V_std
and [_std. Pearson correlation analysis was used to
confirm their predictive value.

( MC-Dropout Sub-networks
{ 3

st (=

;: SOH I
;I RUL I

ss e

Fig. 1. Model architecture of the MC-Dropout FFNN
for Probabilistic Co-Estimation.

II. Methodology and Results

The FFNN in this study is a fully connected network
that takes cycle-level inputs and outputs two scalars
for SOH and RUL. It consists of an input layer, several
hidden layers with RelLU activations, and a final linear
layer. Training uses backpropagation with the Adam
optimizer, where predictions are computed in a
forward pass, loss is calculated, gradients are derived,
and weights are updated until convergence [3]. The
proposed model extends this baseline by adding
dropout layers after each hidden layer, kept active
during both training and testing. Fig. 1 shows the



corresponding architecture of the proposed model.
This Monte Carlo Dropout strategy approximates
Bayesian inference by repeatedly sampling the
network to generate a distribution of predictions. To
evaluate the quality of the uncertainty estimates from
MC-Dropout, two metrics are employed. Prediction
Interval Coverage Probability (PICP), which measures
how often true values fall within 95% prediction
intervals, and Sharpness, which captures the average
width of those intervals.
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Fig. 2. SOH prediction with uncertainty; (a) Battery 1
(b) Battery 2 (c) Battery 3

The MC-Dropout model was evaluated against a
baseline FFNN on three test batteries using MAE,
RMSE, and R? for SOH and RUL. It consistently
outperformed the baseline, reducing average SOH
MAE from 0.0165 to 0.0108 and RUL MAE from 24.05
to 8.37 cycles, with R? values above 0.99 across all
cases. Beyond accuracy, the model produced sharp
and well-calibrated uncertainty estimates. SOH
prediction intervals captured all true values with
average widths below 0.17, while RUL intervals
achieved PICP wvalues of 0.94-1.00 and widened
appropriately as batteries neared end-of-life. Fig. 2
shows the SOH estimation results, and Fig. 3 shows
the RUL estimation results for the three test datasets.

IV. Conclusion

This study introduces a probabilistic deep learning
approach for jointly estimating SOH and RUL of
lithium—-ion batteries using MC-Dropout feedforward
neural networks. Formulated as a multi-output
regression task, the model generates simultaneous
predictions and quantifies uncertainty through Monte
Carlo sampling. Cycle-level datasets were used with a
cross—battery evaluation and engineered features
captured degradation patterns. Compared with a
baseline FENN, the MC-Dropout model delivered

substantial gains across three test batteries, lowering
SOH RMSE and RUL RMSE significantly. It also
produced well-calibrated uncertainty, with SOH PICP
reaching 1.000 and RUL PICP ranging from 0.940 to
1.000 while maintaining sharpness below 131 cycles.
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Fig. 3. RUL prediction with uncertainty; (a) Battery 1
(b) Battery 2 (c) Battery 3
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