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Abstract

Rectified Flow enables efficient generative modeling through deterministic transport between noise and
data distributions. However, the standard training procedure applies uniform weighting across all timesteps, implicitly
assuming that each phase of the transport process is equally important. In this paper, we propose a simple time—
dependent reweighting strategy that emphasizes intermediate timesteps during training, where major structural
transformations empirically occur.

Experiments on CIFAR-100 demonstrate substantial improvements in fast sampling performance.
Midpoint reweighting achieves 45.8% improvement at five function evaluations and 37.8% at ten evaluations
compared to baseline Rectified Flow, while maintaining identical inference cost. Trajectory analysis reveals smoother
transport paths with reduced curvature. These results suggest that adaptive temporal emphasis can improve
generation efficiency without modifying model architecture or sampling procedures.

dependent reweighting strategy assigns higher

I . Introduction ) . . . .
importance to mid-trajectory timesteps without

Flow-based  generative models provide a changing the model architecture or inference
deterministic alternative to diffusion—based procedure.
approaches [2, 3], offering fast sampling and stable Experiments on CIFAR-100 show that this produces
training. Rectified Flow [1] formulates probability smoother trajectories with reduced curvature and
transport between a noise distribution and a data significantly improves sample quality in low-NFE
distribution as an ordinary differential equation (ODE) regimes.

and learns a velocity field that follows straight-line

trajectories between paired samples. This formulation

simplifies training to a regression problem and enables II. Method
efficient generation with a small number of integration
steps.

Standard Rectified Flow employs a uniformly
weighted training objective over the continuous time
interval. This design assumes all timesteps contribute
equally to learning the transport dynamics. But, the
generation process is not uniform over time. Early
timesteps primarily involve noise initialization, while
late timesteps refine fine-scale details. In contrast,
intermediate timesteps often correspond to critical
transitions where global structure emerges.

Recent work has explored improving reflow through
better sample selection [4], while we investigate
whether emphasizing specific temporal regions can
improve learned transport trajectories. Our time-—

Rectified Flow [1] learns a time—dependent velocity
field that deterministically transports samples from a
noise distribution to a target data distribution. During
training, we construct a noisy input sample by linearly
interpolating between a randomly drawn noise sample
and a data sample using a continuous time variable
between zero and one. The velocity network
minimizes the mean squared error between the
predicted velocity and the straight-line transport
direction, with timesteps sampled uniformly over the
interval. At inference time, we generate samples by
starting from random noise and numerically integrating
the learned velocity field using a fixed number of



discretization steps, referred to as the number of
function evaluations (NFE).

We introduce a time—dependent reweighting
strategy that assigns different importance to different
temporal regions, modifying only the training objective.
The per—sample squared error is multiplied by a
scalar weight determined by the corresponding
timestep before averaging over the batch. In this work,
we focus on a midpoint reweighting strategy that
emphasizes intermediate timesteps while down-—
weighting early and late stages of the transport
process. The weighting function consists of a constant
baseline term combined with a quadratic component
that peaks at the trajectory midpoint.

This differs from standard Rectified Flow by a
single multiplicative factor in the loss computation. We
make no changes to the model architecture, sampling
procedure, or inference—time Iintegration, ensuring
identical computational cost during generation.

We evaluate the proposed method on the CIFAR-
100 dataset, which has fifty thousand training images
and ten thousand test images across one hundred
classes. Both baseline and reweighted models use
identical U-Net-style architectures with residual
blocks and time conditioning. We train for one hundred
epochs using the AdamW optimizer with a learning
rate of le-4 and a cosine annealing schedule.
Exponential moving average is applied to model
parameters during training.

We assess trajectory quality using a curvature
metric that measures variations in the predicted
velocity field along the transport path. Sample quality
is evaluated under varying NFE settings ranging from
five to one hundred steps using reconstruction-based
error metrics. Results show that midpoint reweighting
reduces trajectory curvature by 5.3% compared to
baseline and yields substantial improvements in low—
NFE regimes: 45.8% improvement at five steps and
37.8% at ten steps. As NFE increases, the
performance gap narrows and both methods converge
to similar quality, indicating that the proposed method
primarily improves trajectory discretization rather
than model capacity.

II. Conclusion

We presented a simple time—dependent reweighting
strategy for Rectified Flow that emphasizes
intermediate timesteps during training. The proposed
method requires only a minimal modification to the
loss function, introduces no inference-time overhead,
and preserves the original model architecture and
sampling procedure.

Experiments on CIFAR-100 show that midpoint
reweighting significantly improves sample quality in
low-NFE regimes by producing smoother transport
trajectories with reduced curvature. Not all timesteps
are equally important in generative flow training—
adaptive temporal emphasis can lead to more efficient
generation.

Future work includes extending this approach to
higher—resolution datasets, exploring alternative or
learnable  weighting functions, and developing
theoretical analyses connecting temporal reweighting
to ODE discretization error.
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