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​본​ ​논문은​ ​기존의​ ​머신러닝​ ​기반​ ​BCI​ ​통신의​ ​한계를​ ​극복하기​ ​위한​ ​또​ ​다른​ ​대안으로​ ​뇌의​ ​상호작용을​ ​수학적으로​ ​모델링하고​
​Belief​ ​Propagation​ ​기법을​ ​통한​ ​이진​ ​분류​ ​알고리즘을​ ​제시한다.​ ​결과적으로,​ ​적은​ ​데이터만으로도​ ​단축된​ ​시간​ ​내에​ ​활성화된​
​뇌의 영역을 정확히 분류하는 것이 가능하다는 것을 보였다.​

​I. 서 론​
​BCI​​(Brain-Computer​​Interface)는​​뇌신경계로부터​​발생한​​신경​​신호를​

​측정하고​ ​분석하여​ ​컴퓨터와​ ​같은​ ​외부​ ​기기를​ ​제어하거나​ ​사용자의​
​의사를​ ​전달하는​ ​기술을​ ​통칭한다.​​최근​​전체​​BCI​​산업에서​​스마트​​홈​
​제어(IoT) 분야가 약 15%를 차지하며 중요성이 확대되고 있다 [1].​

​하지만​ ​뇌​ ​신호는​ ​노이즈가​ ​심하고​ ​사람과​ ​시간에​ ​따라​ ​달라지기​
​때문에​ ​처리하기가​ ​매우​ ​어렵다.​ ​그래서​ ​현재​ ​대부분의​​BCI는​​신호를​
​분석하고​ ​어떤​ ​일을​ ​수행할지​ ​결정하는​ ​과정에서​ ​딥러닝​ ​(Deep​
​Learning)과​ ​같은​ ​머신러닝​ ​(Machine​ ​Learning)을​ ​필수적으로​
​사용하지만​ ​딥러닝​ ​기반의​ ​BCI는​ ​상용화되기에​ ​여러​ ​문제점이​
​존재한다.​ ​첫째,​ ​판단의​ ​근거를​ ​설명할​ ​수​ ​없는​ ​블랙박스(Black-box)​
​문제로​ ​인해​ ​오작동​ ​시​ ​원인​ ​규명이​ ​어렵고,​ ​시스템의​ ​신뢰도를​
​감소시킨다​ ​[2].​ ​둘째,​ ​매​ ​사용​ ​전​ ​수백​ ​번​ ​이상의​ ​명령​ ​수행을​ ​통한​
​방대한​ ​데이터​ ​수집이​ ​요구되므로​ ​사용자​ ​편의성이​ ​저하되고,​ ​이에​
​따라 현실에서 제한된 성능 저하와 과적합 문제가 일어난다 [3].​

​본​ ​연구는​ ​이러한​ ​딥러닝의​ ​한계를​ ​극복하고자​ ​한다.​ ​Brain​ ​to​ ​IoT​
​통신의​ ​핵심은​ ​사용자의​ ​의도를​ ​명확한​ ​디지털​ ​신호로​ ​변환하는​
​것이다.​ ​예를​ ​들어,​ ​전등을​ ​켜거나​ ​끄는​ ​IoT​​명령을​ ​수행하기​ ​위해서​
​해당​ ​의도와​ ​관련된​ ​뇌​ ​영역이​ ​실제로​ ​활성화되었는지(State​ ​1),​
​비활성화​ ​되었는지(State​ ​0)를​ ​정확히​ ​판별해야​ ​한다.​ ​즉,​ ​뇌​ ​영역의​
​활성도에​ ​대한​​정밀한​​이진​​분류(Binary​​Classification)를​​이용하면​​BCI​
​통신 IoT 기기 제어가 가능하다.​

​따라서​ ​기존​ ​딥러닝​ ​기반​ ​BCI가​ ​겪는​ ​데이터​ ​부족​ ​및​ ​설명​
​불가능성(Black-box)​ ​문제를​ ​해결하기​ ​위한​ ​새로운​ ​방법을​ ​제안한다.​
​구체적으로,​ ​뇌​ ​영역​ ​간의​ ​상호작용의​ ​수학​ ​모형을​ ​얻고,​ ​Belief​
​Propagation​ ​알고리즘을​ ​통해​ ​이진​ ​분류​ ​문제의​ ​목적​ ​함수를​
​최대화함으로써 활성화된 뇌 영역을 정밀하게 분류하였다.​

​II. 수학적 모델링​
​a) 뇌 상호작용의 수학적 모형​
​뇌​ ​영역​ ​간의​ ​복잡한​ ​상호작용을​ ​공간적​ ​제약(Spatial​ ​Constraint,​ ​D),​

​기능적​ ​연결성(Functional​ ​Connectivity,​ ​FC),​ ​구조적​ ​연결성(Structural​
​Connectivity,​ ​SC)의​ ​세​ ​가지​ ​요인으로​ ​분류하였다​ ​[4].​ ​세​ ​가지​ ​제약​
​조건이​ ​서로​ ​선형적인​ ​관계가​ ​있다고​​가정하면​​영역​​i와​​j​​사이의​​전체​
​상관 관계(W)는 다음과 같이 표현할 수 있다.​

​𝑊​
​𝑖𝑗​

= α · ​𝑆​​𝐶​
​𝑖𝑗​

+ β · ​𝐹​​𝐶​
​𝑖𝑗​

+ γ · ​𝐷​
​𝑖𝑗​

​[그림 1] SC (왼쪽): 각 영역이 실제로 어느 영역과 연결되어 있는지를 표현.​
​FC (오른쪽): 특정 기능을 함께 수행한다고 알려져 있는 구역들을 묶어서 구분.​

​[그림 2] D (왼쪽): 거리가 멀어짐에 따라 연결될 확률이 지수적으로 감소함을 표현.​
​W (오른쪽): SC, FC, D의 영향을 선형적으로 조합한 결과를 표현.​

​b) 이진분류를 위한 목적함수 정의​
​뇌의​ ​특정​ ​영역이​ ​자극에​ ​관여했는지​ ​활성화​ ​여부를​ ​표현하기​ ​위해,​

​이진​ ​변수​ ​벡터​ ​를​ ​도입하였다.​ ​여기서​​𝑋​​ ​ = ​ ​{​𝑥​
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​이며,​ ​1은​ ​활성화,​ ​0은​ ​비활성화를​ ​의미한다.​​𝑥​
​𝑖​

∈ {​0​, ​1​} ​𝑥​
​𝑖​
​영역의​

​최적의​ ​상태​ ​벡터​ ​를​ ​찾기​ ​위한​ ​목적​ ​함수​ ​를​ ​다음과​ ​같이​​𝑋​ ​𝐽​(​𝑋​)
​설계하였다.​
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​이​ ​함수는​ ​크게​ ​Node​ ​Potential​ ​(​ ​),​ ​Edge​ ​Potential​ ​(​ ​),​ ​그리고​ ​Sparsity​ϕ ψ
​Penalty (​ ​)로 구성된다.​λ

​c) 목적함수 구성 요소​
​Node​ ​Potential​ ​은​ ​개별​ ​영역의​ ​관측​ ​데이터를​ ​반영한다.​ ​만약​ϕ

​𝑖​
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)

​(활성)이면,​ ​실제​ ​관측된​ ​뇌​ ​신호의​ ​활성화​ ​값을​ ​반환하고​​𝑥​
​𝑖​

= ​1​

​(비활성)이면, 0을 반환한다.​​𝑥​
​𝑖​

= ​0​

​Edge​ ​Potential​ ​는​ ​두​ ​영역​ ​간의​ ​상호작용을​ ​수치화하며,​ ​두​ψ
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​영역의 관계에 따라 두 가지 역할을 수행한다.​
ψ
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​첫​ ​번째​ ​항은​ ​두​ ​영역이​ ​모두​ ​활성화​ ​(​ ​)​ ​될​ ​경우​ ​연결​ ​강도​​𝑥​
​𝑖​

∧ ​𝑥​
​𝑗​

= ​1​

​만큼​ ​목적​ ​함수​ ​값을​ ​증가시키고,​ ​두​ ​번째​ ​항은​ ​두​ ​영역의​ ​상태가​​𝑊​
​𝑖𝑗​

​다를​ ​경우​ ​(​ ​=1),​ ​에​ ​비례하는​ ​페널티를​ ​부여한다.​ ​예를​​들어,​​𝑥​
​𝑖​

⊗ ​𝑥​
​𝑗​

​𝐷​
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​주변​ ​영역은​ ​모두​ ​0인데​ ​혼자​ ​1인​ ​이상치의​ ​경우,​ ​두​ ​번째​ ​항을​ ​통해​
​목적함수에​ ​높은​ ​페널티를​ ​준다.​ ​은​ ​뇌​ ​영역의​ ​배치​ ​형태를​δ​와​​ ​ϵ
​고려하여​ ​결정했다.​ ​샘플링​ ​한​ ​뇌​ ​영역이​ ​격자구조​ ​형태로​ ​배치되어​
​있을​ ​때​ ​가장자리에​ ​위치한​ ​영역을​ ​제외하면​ ​일반적으로​ ​한​ ​영역에​
​대해​ ​주변​ ​영역은​ ​8개이다.​ ​이를​ ​이용하여​ ​를​ ​결정하고​ ​전체​δ
​목적함수의 항들의 스케일을 맞춰주기 위해​ ​을 정의하였다.​ϵ
​마지막으로​ ​Sparsity​ ​penalty는​ ​모든​ ​가​ ​1일​ ​때​ ​최대가​ ​되는​ ​자명​ ​해​​𝑥​

​𝑖​

​(Trivial​ ​solution)를​ ​방지하기​ ​위한​ ​것으로,​ ​6~8​ ​사이의​ ​값으로​ ​지정해​
​주었다.​
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​d) 목적함수의 최적화​
​정의된​ ​목적​ ​함수는​ ​복잡한​ ​구조를​ ​가져서​ ​이를​ ​최대화하는​ ​전역​

​최적해​ ​를​ ​완전탐색으로​ ​구하는​ ​것은​ ​O(​ ​)의​ ​기하급수적인​ ​시간​​𝑋​ ​2​​𝑁​

​복잡도를​ ​요구하므로​ ​현실적으로​ ​불가능하다.​ ​그러나​ ​Belief​
​Propagation​ ​기법을​ ​적용하면,​ ​변수​ ​노드와​ ​함수​ ​노드​ ​사이의​ ​간단한​

​메시지​ ​전달​ ​과정을​ ​통해​ ​시간​ ​복잡도를​ ​O(​ ​)수준으로​ ​획기적으로​​𝑁​​2​

​낮추면서도​ ​효율적으로​ ​최적해​ ​X를​ ​구할​ ​수​ ​있다.​ ​알고리즘​ ​수행을​
​위해​ ​각​ ​노드(Variable​ ​Node)와​ ​함수(Factor​ ​Node)​ ​사이에서​ ​교환되는​
​메시지는 다음과 같이 정의된다.​
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​III. 시뮬레이션 결과 및 해석​
​총​ ​네가지​ ​경우​ ​(Focal,​ ​Cross-boundary,​ ​Multi-focal,​ ​Multi-focal​

​diagonal)​ ​에​ ​대해​ ​알고리즘을​ ​적용하였고,​ ​각​ ​경우마다​ ​accuracy와​
​Jaccard Similarity를 계산하였다.​
​Focal​ ​(F)​ ​은​ ​한​​구역​​(FC로​​구분되는)​​내에서​​특정​​영역들이​​활성화된​

​경우,​ ​Cross-boundary​ ​(CB)는​ ​활성화된​ ​영역들이​ ​두​ ​구역에​ ​걸쳐​ ​있는​
​경우,​ ​Multi-focal​ ​(MF)은​ ​가까운​ ​두​ ​구역에서​ ​각각​ ​특정​ ​영역들이​
​활성화된​ ​경우,​ ​Multi-focal​ ​diagonal​ ​(MFD)은​ ​MF와​ ​동일하지만​ ​두​
​구역이 먼 경우이다.​
​[표 1]은 각 경우당 10회의 실행 결과의 평균 Accuracy와 Jaccard​
​Similarity를 정리하였다.​

​[​​표 1] 4가지 시나리오 평균 Accuracy, Jaccard Similarity​

​Accuracy는​ ​F,​ ​CB,​ ​MFD,​ ​MF​​순,​ ​Jaccard​ ​Similarity는​ ​CB,​ ​F,​ ​MFD,​ ​MF​
​순으로​ ​낮아지는​ ​경향성을​ ​보인다.​ ​두​ ​지표에는​ ​어느​ ​정도​ ​차이는​
​있으나, 모두 MF인 경우에 가장 낮은 것을 알 수 있다.​

​[그림​ ​3]은​ ​CB,​ ​[그림​ ​4]는​ ​MF,​ ​[그림​ ​5]은​ ​MFD의​ ​시뮬레이션​
​결과이다.​ ​가장​ ​왼쪽​ ​그림이​ ​자극에​ ​실제​ ​관여하는​ ​영역​ ​(Ground​
​Truth),​​가운데가​​노이즈가​​포함된​​뇌​​활성도​​input​​데이터​​(Noisy​​input),​
​오른쪽이​ ​알고리즘​ ​적용​ ​후​ ​추론된​ ​자극​ ​관여​ ​영역​ ​(BP​ ​Inferred​
​Result)이다.​ ​정답과​ ​결과의​ ​경우​ ​활성화된​ ​점은​ ​빨간색,​ ​비활성화된​
​점은​ ​파란색으로​ ​표시하였고,​ ​실제​ ​input의​ ​경우​ ​세기가​ ​셀수록​ ​진한​
​빨간색으로 표시하였다.​

​[그림 3] Spanning A & B Boundary​

​[그림 4] Centers of C & D​

​[그림 5] Centers of A & D​

​[그림​ ​5]을​ ​보면,​ ​최종​ ​영역이​ ​가장자리​ ​영역을​ ​포함하는​ ​경향성이​
​있음을​ ​알​ ​수​​있다.​​이는​​인접​​영역이​​8개일​​때를​​기준으로​​알고리즘을​
​유도했는데,​ ​가장자리에​ ​위치한​ ​영역은​ ​실제​ ​인접​ ​영역이​ ​3개​ ​또는​
​5개에​​불과하기​​때문에​​나타난​​결과이다.​​이​​문제는​​replicate​​padding을​
​사용해서​ ​해결할​ ​수​ ​있을​ ​것이라​ ​기대한다.​ ​가장자리​ ​열과​ ​행을​
​복제한​ ​뒤​ ​가장자리에​ ​덧붙이게​ ​되면​ ​(N​ ​by​ ​N​ ​(N+2)​ ​by​ ​(N+2))​→
​인접영역이​ ​부족한​ ​문제를​ ​해결할​ ​수​ ​있고​​알고리즘의​​가정을​​충족할​
​수 있다.​
​또한,​ ​[그림​ ​4]과​ ​같이​ ​가까운​ ​두​ ​영역​ ​사이에​ ​이상치가​ ​존재하면​ ​두​

​영역이​ ​이어지는​ ​결과가​ ​나타난다.​ ​이는​ ​인접​ ​영역에​ ​대해서​ ​edge​
​penalty​ ​값이​ ​부족하기​ ​때문이다.​ ​이와​ ​같은​ ​오차는​ ​최적해​ ​도출을​
​방해하며,​ ​주변​ ​영역으로​ ​전파됨에​ ​따라​ ​시스템의​ ​정확도를​
​저하시킨다.​ ​하지만​ ​이​ ​문제는​ ​알고리즘의​ ​목적을​ ​고려해​ ​보았을​ ​때​
​허용 가능한 오차 범위 안에 있다.​

​IV. 결 론​
​본​ ​논문에서는​ ​머신러닝​ ​알고리즘​ ​기반​ ​BCI​ ​통신의​ ​속도​ ​및​ ​데이터​

​부족​ ​문제를​ ​효율적으로​ ​해결하기​ ​위한​ ​알고리즘을​ ​제안한다.​ ​실제​
​뇌의​ ​환경을​ ​수학적으로​ ​모델링​ ​하고​ ​목적함수를​ ​정의한​ ​뒤​ ​이를​
​최대화​ ​하는​ ​벡터​ ​를​ ​찾기​ ​위하여​ ​Belief​ ​Propagation​ ​기법을​​𝑋​

​사용하였다.​ ​N개의​ ​이진​ ​변수를​ ​완전​ ​탐색하기​ ​위해서는​ ​O(​ ​)의​​2​​𝑁​

​기하급수적인​ ​시간​ ​복잡도가​ ​필요하지만​ ​Belief​ ​Propagation을​

​사용하게​ ​되면​ ​O(​ ​)으로​ ​시간​ ​복잡도를​ ​획기적으로​ ​줄일​ ​수​ ​있다.​​𝑁​​2​

​또한​ ​본​ ​알고리즘을​ ​위한​ ​데이터의​ ​양은​ ​머신러닝에​ ​비해​ ​현저히​
​적으므로 데이터 부족 문제를 해결할 수 있을 것으로 보인다.​

​이​ ​알고리즘은​ ​근적외선을​ ​이용해​ ​뇌의​ ​혈류량​ ​변화를​ ​측정하는​
​fNIRS와​ ​함께​ ​사용되어,​ ​각​ ​IoT​ ​사용​ ​시에​ ​활성화되는​ ​영역들을​
​효과적으로​ ​탐색​ ​및​ ​감지할​ ​수​ ​있게​ ​할​ ​것이다.​ ​추가적으로,​ ​fNIRS로​
​측정한​ ​헤모글로빈​ ​농도​ ​변화량의​ ​기울기​ ​등의​ ​정보와​ ​함께​
​부분적으로​ ​딥러닝을​ ​사용하여​ ​파형​ ​변화까지​ ​파악하거나,​ ​EEG처럼​
​직접적으로​ ​전기​ ​신호를​ ​측정하는​ ​기계와​ ​함께​ ​사용하여​ ​시간​
​해상도를​ ​향상시키는​ ​등의​ ​방법을​ ​통해​ ​Brain​ ​to​ ​IoT​ ​통신의​ ​기능을​
​더욱 개선할 수 있을 것이라 기대한다.​
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