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요 약  

 
본 논문은 기존 배터리 관리 시스템(Battery management system; BMS)은 전압, 전류, 온도 기반 보호 로직에 

최적화되어 있으나, 실제 운용에서 빈도가 높은 State-of-charge(SOC) 20– 80% 구간에서는 경미한 결함 셀이 존재해도 

전압 극값(min/max)이나 단순 편차만으로 조기 진단이 어렵다. 본 논문은 통신 기반 실운용 환경에서도 적용 가능한 

데이터 고도화 기반의 진단 프레임워크를 제안한다. 제안 방법은 1 차 RC Thevenin 등가회로(Electrical equivalent 

circuit model; EECM)와 재귀적 최소제곱(Recursive least squares; RLS)을 결합해 내부 모델 파라미터(옴 저항, 확산 

저항, 확산 커패시턴스)를 실시간 추정한다. 사이클에 따른 시계열 차이를 정규화한 뒤, 전압 및 내부 파라미터 시계열을 

Gramian angular summation field(GASF)와 Markov transition field(MTF)로 2D 이미지로 입력 데이터를 재구성하여 

2D-Convolutional neural networks(CNN) 분류기로 정상/과충전/과방전 상태를 판별한다. 과충전, 과방전 1 사이클 

전기적 남용으로 제작한 경미 이상 셀을 포함한 6S2P 모듈(25°C, 100 사이클, 4.1– 2.9V) 실험 결과, 전압 기반 

이미지보다 RLS 기반 내부 파라미터 이미지가 일관되게 높은 분류 성능을 보였으며, 특히 GASF 변환이 MTF 보다 

안정적인 성능을 보였다. 본 연구는 원시 전압 신호의 한계를 보완하기 위해 추정 가능한 내부 상태 특징을 생성하고 

이를 2D 표현으로 변환하여 CNN 이 학습 가능한 형태로 정규화했다는 점에서 실용적 기여를 제공한다. 

 

 

Ⅰ. 서 론  

현행 배터리 관리 시스템(Battery management 

system; BMS)는 전압 상/하한 및 전압 불균형 임계값 

기반의 보호 로직 중심으로 설계되어 중간 State-of-

charge(SOC) 20– 80%에서 서서히 진행되는 내부 

열화나 경미 불균형을 조기에 식별하는 데 한계가 

있다[1]. 실제 운용 환경에서는 경미한 과충전/과방전 

스트레스를 한두 차례 받은 셀도 초기 운용에서는 정상 

셀과 전압 거동이 중첩되는 경우가 빈번하다. 이때 전압 

기반 min/max 호출이나 단순 편차 모니터링은 극값이 

충분히 발현되지 않는 구간에서 조기 경보가 어렵고, 

대형 팩에서는 온도 센서 밀도가 제한되어 국소 열 

이상도 가려질 수 있다. 이러한 배경에서 Differential 

voltage analysis(DVA), Incremental capacity 

analysis(ICA), 확장 칼만 필터(Extended Kalman filter; 

EKF), 데이터 기반 Convolutional neural network(CNN) 

등 다양한 진단 방법이 연구되어 왔으나, 실무 

적용에서는 운용 조건 의존성, 장비·운영 및 계산 복잡도 

등 다수의 문제가 동시에 존재한다. 본 연구는 실제 운용 

적용성에 초점을 맞춰, BMS 가 제공 가능한 기본 

신호로부터 내부 상태 정보를 재귀적 

최소제곱(Recursive least squares; RLS)을 통해 실시간 

추정하고, 이를 CNN 이 학습 가능한 2D Gramian 

angular summation field(GASF)와 Markov transition 

field(MTF)으로 부호화하는 데이터 고도화 기반 진단 

프레임워크를 제안한다. 

Ⅱ. 본론  

2.1 경미한 비정상 모듈 제작 및 전기적 특성 실험 

제조사 입고 불균형 팩 사례 분석에서, 보호 로직이 

적용된 상태에서도 특정 직렬 셀의 이상이 초기에는 

명확히 드러나지 않는 문제가 확인되었다. 중간 SOC 

구간에서 정상/비정상 전압 범위가 겹쳐, 전압 불균형 

임계값을 지속 충족하지 못하고 시스템이 정상으로 

분류되는 현상이 발생했다. 전압 편차 기반 보호 로직이 

열화 누적과 극심한 고장 상황에서는 민감하게 반응할 

수 있지만, 조기 진단 지표로는 부족함을 시사한다. 이에 

극심한 팩 고장이 아닌 경미 이상 재현을 위해 정상 

상/하한 전압을 한 사이클만 초과하도록 프로파일을 

설계하였다. 과충전은 5.0V 까지 충전, 과방전은 

0.2V 까지 방전하여 비정상 셀 샘플을 확보하였다. 



이후 비정상 셀을 포함한 6S2P 모듈을 구성하여 보수적 

운용 범위(4.1– 2.9V, 1C)로 전기적 특성 실험을 

수행하였다. 실험 결과는 그림 1 에 나타내었으며 비정상 

셀(1, 6 번 직렬 셀)은 사이클이 진행될수록 열화가 

가속되었으나, 초기 사이클 및 중간 SOC 에서는 전압 

거동이 정상 셀과 유사한 구간이 존재하여 전압 기반 

조기 진단이 제한되었다. 

2.2 RLS 기반 내부 모델 파라미터 추정 및 이미지 

데이터 셋 구성 

배터리 내부 상태를 간접적으로 해석 가능한 1 차 RC 

전기적 등가회로 모델을 사용하였다. 단자전압과 Open 

circuit voltage(OCV) 차이를 과전위로 정의하고, 확산 

거동을 RC 네트워크로 표현한 후, 연속 방정식을 순방향 

오일러로 이산화한다. RLS 는 오차 계산, Gain 산출, 

공분산 갱신, 파라미터 업데이트를 반복하며, 추정된 

이산 파라미터로부터 직렬 저항(Internal resistance; Ri), 

확산 저항(Diffusion resistance; Rdiff), 확산 

커패시터(Diffusion capacitance; Cdiff)을 추정한다. 단일 

전압 신호로는 드러나지 않는 내부 저항 상승 및 확산 

시상수 변화를 확인할 수 있다. 사이클 진행에 따라 

충/방전 시간이 단축되어 동일 SOC 구간의 시계열 

길이가 달라지는 문제가 발생한다. 이는 고정 입력 

크기를 요구하는 CNN 학습에 불리하므로, 본 연구는 

SOC 20– 80%를 10% 간격으로 세분화하고 각 구간별 

시계열을 piecewise aggregate approximation(PAA)로 

동일 길이로 정규화하였다. 또한 정상/비정상 분리가 

유의미한 SOC 구간 설계를 위해 Fisher 분리도 기반 

분석을 수행했으며, 10% 세분화가 전반적으로 높은 

분리도를 보였다. 정규화된 1D 시계열은 두 가지 

방식으로 2D 이미지로 변환한다. 이미지 재구성 기법은 

GASF, MTF 을 사용하였으며 GASF 는 정규화된 

시계열을 극좌표로 매핑 후 Gramian 행렬을 구성하여 

시점 간 상관과 전역 패턴을 이미지로 표현한다. MTF 는 

값을 구간 양자화한 뒤 상태 전이 확률을 행렬로 만들어 

전이 패턴을 이미지로 표현한다.  

2.3 2D-CNN 분류기 및 성능 평가 

CNN 은 컨볼루션-풀링 블록을 반복하여 특징을 

추출하고, Flatten 및 Dense 레이어를 통해 최종 분류를 

수행한다. SOC 10% 구간(6 개)×상태(정상/과충/과방)로 

총 18 개 클래스를 구성하여 지도학습으로 학습하였다. 

성능 평가는 정확도뿐 아니라 정밀도(Precision), 

재현율(Recall), F1 을 함께 사용해 오탐/미탐 특성을 

점검하였다. 이미지 데이터 셋 구성과 분류 성능 평가 

결과는 그림 2 와 표 1 에 나타내었으며 RLS-GASF(F1-

score 0.9) 기법의 분류 성능이 가장 높았다. 

표 1. RLS 및 Voltage 기반 이미지 별 분류 성능 평가 

 Precision Recall F1-score 

RLS-GASF 0.9 0.91 0.9 

RLS-MTF 0.63 0.6 0.61 

Voltage-GASF 0.31 0.36 0.33 

Voltage-MTF 0.003 0.057 0.006 

 

Ⅲ. 결론  

본 논문은 전압 기반 보호 로직이 취약한 중간 SOC 

구간에서 경미 이상 셀을 조기에 구분하기 위해, RLS 

기반 내부 파라미터 추정– PAA 정규화– GASF/MTF 2D 

부호화– CNN 분류로 이어지는 데이터 고도화 기반 진단 

프레임워크를 제안하였다. 과충전/과방전 1 사이클 

전기적 남용으로 제작한 경미 이상 셀을 포함한 6S2P 

모듈 실험에서, 전압 단일 신호로부터 생성된 이미지 

데이터셋은 낮은 진단 성능을 보였으나, RLS 로 추정한 

내부 파라미터를 RGB 로 융합한 이미지 입력은 CNN 

분류 성능(0.9)을 크게 향상시켰다. 이는 단순 

임계값/극값 감시를 넘어 내부 상태를 반영하는 특징을 

학습 가능한 형태로 부호화하는 과정이 중요함을 

보여준다. 
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그림 1. 전압 기반 진단 구조적 한계 및 경미 비정상 

모듈 전기적 특성 실험 결과 

 

그림 2. GASF, MTF 이미지 데이터 셋 구성 및 분류 

성능 평가 결과 


