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요 약

본 논문은 스마트 팩토리 등 산업 현장에서 요구되는 산업 이상 탐지(Industrial Anomaly Detection, IAD)를 수행하기 위해, 대규모 멀티모달 모델
(MLLM)에 Test-Time Scaling(TTS) 기법을 적용하는 방법론을 제안한다. 최근 MLLM은 뛰어난 범용성을 보이고 있으나, 미세한 결함을 다루는
산업데이터의 특성상 zero-shot 추론만으로는 한계를 보이고 있다. 이에 본 연구에서는 모델의 구조적 변경이나 추가적인 학습 없이 추론 단계에서의
연산 자원 배분만으로 성능을 개선하고자 하는 Self-Consistency 알고리즘을 도입하였다. Qwen3-VL 모델을 기반으로 산업 데이터셋에 대해 다수결
투표(Majority Voting) 방식의추론을수행하였으며, 이를 통해응답개수와추론정확도간의상관관계를분석하였다. 실험 결과를통해제한된컴퓨팅
자원 하에서의 단순 스케일링이 갖는 한계점을 규명하고, 향후 산업용 에이전트가 나아가야할 효율적인 추론 전략과 알고리즘 고도화 방향(Weighted
Voting 등)을 제시한다.

Ⅰ. 서론

스마트 팩토리와 무인 공장 실현을 위해 자동 비전 검사는 산업 분야에

서 핵심이다. 기존의 산업 이상 탐지(Industrial Anomaly Detection,

IAD)[1]의 판별 모델들은 특정 데이터에 과적합 되어 있다. 판별 모델들

은생산라인을변경할경우재학습이필요하고, 결함에대해 보고서를자

세하게 제공하지 못한다는 한계가 있었다. 대규모 멀티모달 모델

(MLLM)[2]은 이러한 문제점을 해결하고 산업 이상 탐지에서 새로운 대

안으로 떠오르고 있다.

그러나 IAD분야의 벤치마크인 MMAD(Multi-Modal Anomaly

Detection)[3]의 연구 결과에 따르면, 현재 최첨단 MLLM(Multimodal

Large Language Models)조차 산업 현장이 요구하는 정밀도에는 적합하

지 않다는 추세이다. GPT-4o와 같은 상용 모델조차 복잡한 결함의 유무

를 판단하거나 그 원인을 추론하는 질문에서 뚜렷한 성능 저하를 보였으

며, RAG(Retrival-Augmented Generation)나 Expert Agent 방식의 접근

도모델자체의근본적인시각적추론한계를극복하지는못했다. 이는 단

순한데이터의 양적증가나파라미터의확장만으로는 미세한결함을다루

는 고도의 산업적 추론 작업을 해결하기 어렵다는 것을 시사한다.

최근 LLM에 대한 연구에서는 사전 학습에서의 스케일링이 가진 자원

효율성 한계를 극복하기 위해서 추론 시점에 추가적인 연산 자원을 할당

하는 Test-Time Scaling(TTS)[4]이 새로운 흐름으로 자리 잡고 있다.

OpenAI의 o1이나 DeepSeek의 R1과 같은 모델들이 복잡한 수학이나 코

딩문제에서 "System2" 적인 사고과정을통해추론 성능을개선할수있

음을 보였다. 이는 모델이 바로 답변을 생성하기보다는 문제를 깊이 생각

하는 과정을 통하여 성능을 최대한으로 발휘할 수 있음을 보여준다.

본 논문은 TTS의 개념을 산업 이상 탐지 영역으로 확장하여, MLLM의

결함 탐지 성능을 개선하는 것을 목표로 한다. 기존 MMAD 벤치마크에

서 드러난 추론에서의 결함을 보완하기 위하여 TTS에서 Sequential

Scaling에 해당하는 Self-Consistency 전략을 적용하였다. 이를 통해 모

델의크기를키우지않고, 추론 시점에서의연산배분만으로산업이상탐

지 영역에서의 성능을 보완할 수 있음을 보이고자 한다.

Ⅱ. 본론

2.1 MLLM(Multimodal Large Language Model)

CLIP(Contrastive Language-Image Pre-training)[5]과 같고, 강력한

zero-shot 분류 성능을 보여주는 VLM(Vision-Language Model)은 사

전 학습된 모델이나 특징을 특정 작업에 맞게 조정하여 활용하는 다운스

트림비전태스크에다양하게적용되어왔다. 이와 같은 VLM의인코더와

LLM을 결합한것이MLLM이다. MLLM은 시각적 콘텐츠와 관련된 텍스

트기반상호작용을할수있도록만든다. 최근 연구들은이러한다운스트

림태스크에 대한 추론 근거를 제공하기 위하여 MLLM을 활용하고있다.

2.2 IAD(Instuction Anomaly Detection)

기존 IAD 연구는 결함 샘플 없이 결함을 식별하고 위치를 파악하는 것

을 목표로 했다. 기존 IAD 방법은 수많은 정상 샘플에 대해 학습한 다음

이상 감지 기술을 사용하여 테스트 샘플에서 이상을 식별했다. 최근 연구

는 IAD의 일반화 기능에 초점을 맞췄다. CLIP과 Vision-Language

Model을 활용하여 예시 샘플이주어지는 few-shot 모델, 예시 샘플 없이

처리하는 zero-shot 모델이등장했다. 그러나이러한 판별모델들은 CLIP

모델에서 미리 정의된 이상 개념을 너무 의존하여 새로운 시나리오로 일

반화하는 기능을 제한한다. MLLM은 시각적 구성요소와 함께 복잡한 텍



스트 입력을 이해하고 다양한 응답을 제공할 수 있으므로 이러한 문제를

해결하는데 도움이 된다.

2.3 Test-Time Scaling(TTS)

초기의 LLM은 더 많은 데이터와 파라미터를 사용하여 모델을 훈련시키

는 "Training-Time Scaling"을 통하여 언어의 이해, 추론, 지식 적용 능

력을 학습했다. 그러나이러한 training-time scaling 방식은자원을 많이

사용하고 사람과 관련된 데이터에 접근할 수 있는 능력이 제한적이라는

문제에 부딪히면서 발전 속도가 둔화되기 시작했다. 이러한 한계로 연구

자들은 LLM의 지능을 추론 시점에서 발현시키는 방법에 주목하기 시작

했다. 인간이 복잡한 문제에 직면했을 때 더 깊고 신중하게 사고하여 더

나은 결과를 도출하는 것에서 영감을 받아서 추론 시점에 추가적인 연산

을 할당하여 성능을 높이는 방법들이 등장했다. 이를 "Test-Time

Scaling"(TTS)이라고 부르며, 모델의 지능을 추론 시점에서 발현시키는

방법이다.

Ⅲ. 실험

3.1 Qwen3-vl-8B-Instruct

본연구에서는TTS의효과를극대화하기위하여 Qwen3-vl-8B-Instruct[6]

를 베이스 모델로채택했다. Qwen3는 모델아키텍처 내에 복잡한 다단계

추론을 위한 ‘사고모드’와 신속한 응답을 위한 ‘비사고 모드’를 통합한 모

델이다. Qwen3가 도입한 ‘사고 예산’ 기능은 사용자가 추론에 투입할 계

산 리소스를 직접 제어할 수 있게 하고, 작업의 복잡도에 따라 추론의 정

도를 유연하게 조절할 수 있게 한다.

아래 표는 MMAD 데이터셋에 대하여 Qwen2.5-vl-7B-Instruct와

Qwen3-vl-8B-Instruct의 성능을 평가한 결과이다. 이전 모델 Qwen2.5

보다 Qwen3의 성능이더 좋은 것을 확인할수 있다. 이는 Qwen3가 추론

시점의 연산 배분을 통한 성능 향상을 이뤄냈다는 것을 알 수 있다.

3.2 Self consistency

Self-Consistency는 모델이 생성한 다수의 후보 응답 중 가장 빈도수가

높은 답변을 최종 결과로 채택하여 추론의 성능을 높인다. 이를 Qwen3

모델의추론단계에적용하여, 같은 입력에대해 3회의반복하여 3가지 응

답을 생성한 뒤 제일 많이 나온 응답을 고르는 다수결 투표를 통해 최종

응답을 결정하는 방식을 사용했다.

실험 결과, 첨부된표와같이 전체데이터셋에대해 Average 72.34%, F1

Score 73.29%를 기록했다. MVTec-AD 데이터셋에서는 84.27%로 3회

반복이비교적높은성능을보였으나, GoodsAD와 같이 난이도 높은데이

터셋에서는 66.75%에머물렀다. 결과적으로 3회반복 추론에서는단일 추

론 대비 통계적으로 유의미한 성능 향상이 어렵다는 것을 확인했다.

이에 대해서 찾아본 원인은 다음과 같다. Self-Consistency의 효과를 보

여주기 위해서 충분한 수의 응답을 통하여 오답의 분산을 줄이고 정답의

일관성을얻어야하지만, 3회라는적은횟수는모델의추론성능을개선하

기에는부족했던것으로판단된다. 이후 연구에서는응답개수를대폭늘

리거나, 단순 다수결이아닌각 응답의 신뢰도를반영한가중 투표 방식을

도입하는 것도 고려하여 성능 개선할 필요가 있다.

표 1. Qwen2.5-vl-7B-Instruct 모델 성능 결과

표 2. Qwen3-vl-8B-Instruct 성능 결과

표 3. Self consistency를 적용한 Qwen3-vl-8B-Instruct 성능 결과

Ⅳ. 결론

본연구를통해MMAD 데이터셋에대한 Self-Consistency 적용은 모델

의 추론 성능을 개선하기에 부족하며, 단순 다수결 투표만으로는 의미 있

는 성능 향상을 끌어내기 어렵다는 한계를 확인하였다. 결과적으로 추론

의 전략을 단순하게 연산을 반복하기보다 통계적 신뢰성 확보를 위한 응

답개수의확대와신뢰도기반의가중투표도입등추론에추가적인연산

을부여하는방법을 다양하게적용하면산업현장에서 요구하는정밀도를

달성할 수 있다는 결론을 도출하였다.
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