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Parameter Value

Clipping parameter (€) 0.2

Discount factor (vy) 0.99

GAE parameter () 0.95

Entropy coefficient (c.) 0.01

Learning rate (n) Stepwise decay
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Stage Qubits Noise level Episodes Time steps

1 1 0.000 50 25

2 2 0.000 60 35

3 2 0.003 70 40

4 2 0.006 80 45

5 3 0.008 100 50

6 3 0.012 120 55
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