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Abstract—Artificial intelligence (AI)-driven healthcare analyt-
ics face a critical reproducibility challenge, with many mod-
els failing to generalize across heterogeneous and distributed
datasets. This survey reviews the evolution of computational
frameworks for biomarker discovery, from early correlation-
based networks to causal Bayesian inference and deep multi-
modal learning architectures. We identify limited auditability,
interpretability, and deterministic execution as primary ICT
engineering bottlenecks. To address these challenges, we outline
a next-generation Al systems framework leveraging Federated
Learning and Explainable AI (XAI) to enable reproducible,
privacy-preserving, and trustworthy analytics across decentral-
ized institutions.

Index Terms—Neurodegenerative Diseases, Multi-omics Inte-
gration, Reproducible Al, Federated Learning, Explainable AI
(XAI).

I. INTRODUCTION
The rapid proliferation of high-throughput omics technolo-

gies has transformed the landscape of neurodegenerative dis-
ease research, enabling the identification of complex molec-
ular signatures associated with Alzheimer’s Disease (AD)
and Parkinson’s Disease (PD). Traditional single-modality
approaches often fail to capture the heterogeneous nature of
these pathologies, leading to a significant “mRNA-protein
gap” where transcriptomic changes do not reliably predict
downstream protein-level dysfunction. Consequently, the field
is shifting toward Al-driven multi-omics integration, which
fuses genomics, proteomics, and metabolomics to uncover ro-
bust biomarkers for early diagnosis and precision medicine [1].
However, despite these advancements, the clinical translation
of Al models remains hindered by a critical lack of repro-
ducibility; a recent meta-analysis revealed that only 21% of
health Al studies release code and fewer than 23% validate
findings on external datasets, resulting in models that fail
to generalize across diverse patient cohorts [2]. This sur-
vey reviews the evolution of computational frameworks from
correlation-based networks to causal inference and explainable
Al highlighting the urgent engineering need for deterministic,
auditable pipelines to bridge the gap between discovery and
clinical utility.

II. AI-DRIVEN BIOMARKER DISCOVERY IN

NEURODEGENERATION
The application of Al to neurodegeneration has evolved

from descriptive correlation to predictive causal inference and
deep phenotyping. Early computational frameworks utilized
Weighted Gene Co-expression Network Analysis (WGCNA)
to identify modules of co-regulated genes associated with

regional vulnerability in Alzheimer’s Disease (AD), establish-
ing spatial maps of pathology [3]. However, correlation does
not imply causation. To address this, authors [4] introduced
causal Bayesian networks anchored by cis-regulatory genetic
variants (cis-eSNPs), successfully identifying TYROBP as a
master regulator of the immune-microglia module—a finding
validated by in vitro perturbation.

Recent frameworks have expanded this approach through
multi-omics integration to resolve data heterogeneity [5].
Authors [6] demonstrated that Commonality Analysis across
transcriptomics, proteomics, and metabolomics could iden-
tify conserved metabolic dysfunctions (specifically Vitamin
B pathways) in both human and mouse models, offering
robust cross-species biomarkers. Most recently, the field has
adopted Transformer architectures to handle high-dimensional
multimodal data. Authors [7] developed a unified Vision-Text
Transformer that achieved 98.75% diagnostic accuracy for
AD. Crucially, this study integrated Explainable Al (XAI) via
LIME to visualize decision boundaries, confirming that the
model’s predictions were driven by biologically valid features,
such as hippocampal atrophy, rather than statistical artifacts.
A comparative summary of these computational frameworks,
highlighting their contributions to reproducibility and specific
limitations, is provided in Table I.

TABLE I
COMPARATIVE ANALYSIS OF COMPUTATIONAL FRAMEWORKS FOR
NEURODEGENERATIVE BIOMARKER DISCOVERY

Generation Methodology Study Reproducibility Contri- Limitations

bution

Gen 1: Correlation ~ WGCNA (Co- 31
expression Networks)
Bayesian Networks 41
(Genetic Anchors)

Mapped  spatial vulnera-
bility in AD brains.

Identified causal drivers
(e.g., TYROBP) using cis-

Identifies correlation only;
lacks causal direction.
Computationally
expensive; requires

Gen 2: Causal

eSNPs.

large sample sizes.

Gen 2: Multi-Layer

Commonality Analysis
(Venn Integration)

(6]

Validated metabolic path-
ways across species (Hu-
man/Mouse).

Intersection methods
discard unique, modality-
specific data.

Gen 3: Deep

Deep Phenotyping (18-
Platform Integration)

[81

Established "Mutual Best
Hits” for cross-platform
validation.

High cost/complexity to
generate 18-layer datasets.

Gen 3: Explainable

Transformers + XAI
(LIME)

171

Validated "Black  Box™
decisions against clinical
biomarkers.

Vision Transformers re-
quire massive data to out-
perform CNNs.

III. REPRODUCIBILITY CHALLENGES IN BIOMARKER
DISCOVERY

Despite the promise of Al in neurodegeneration, the field
faces a systemic “reproducibility crisis” that limits clinical
translation. A comprehensive meta-analysis of 511 Machine
Learning for Health (MLH) studies identified a substantial
lack of transparency: only 21% of papers released their code,
and fewer than 55% utilized public datasets. Notably, only
23% of studies assessed their models on external datasets from
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multiple institutions. This deficiency in conceptual replicabil-
ity, defined as the ability of a model to perform effectively
in new clinical environments, results in widespread dataset
overfitting, where models capture site-specific artifacts rather
than generalizable biological signals [2].

Beyond data availability, the software engineering archi-
tecture underlying validation frameworks remains underde-
veloped. A meta-analysis of single-cell benchmarks found
that although code sharing is increasing, fewer than 8% of
studies use containerization technologies such as Docker to
ensure reproducible computational environments, limiting the
extensibility of many pipelines. Moreover, the emerging field
of digital biomarkers lacks standardized validation criteria,
leading to fragmented datasets that cannot be readily pooled
for robust model training [9]. Unless these foundational en-
gineering challenges are addressed, Al-driven biomarkers are
unlikely to progress beyond academic research and become
reliable clinical tools.

IV. TOWARD DETERMINISTIC AND AUDITABLE Al
PIPELINES
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Fig. 1. Proposed Federated Learning framework integrating Explainable Al
(XAI) for reproducible biomarker discovery.
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To address the previously identified engineering gaps, fu-
ture biomarker discovery frameworks should emphasize ac-
cessibility and auditability rather than focusing solely on
algorithmic complexity. Recent developments indicate that
democratizing access to multi-omics networks is essential for
effective validation. Authors [8] introduced the “Molecular
Human” framework, which integrates 18 high-throughput plat-
forms into an open-access web server (Comics). This tool
enables users without coding expertise to query molecular
interactions in real time, thereby shifting the paradigm from
static code repositories to dynamic and auditable exploration.
Similarly, authors [10] developed ILINCS, a platform that pre-
computes over one billion connections between transcriptomic
and proteomic signatures. This system supports deterministic
“Connectivity Analysis,” allowing researchers to consistently
identify therapeutic targets, such as mTOR signaling, that are
often overlooked by traditional stochastic pathway analyses.

Nevertheless, centralized web tools are insufficient to ad-
dress the privacy constraints inherent in clinical data. Achiev-
ing conceptual replicability without compromising patient
privacy requires adopting the Federated Learning (FL) ar-
chitecture illustrated in Fig 1. FL enables the training of
complex models, such as the Vision Transformers described
by authors [7], across decentralized datasets from multiple

institutions, including hospitals, without sharing raw patient
data. By separating model training from data centralization, FL
provides a deterministic engineering approach for validating
biomarkers across diverse populations, thereby ensuring that
Al-driven discoveries remain robust, unbiased, and clinically
reliable.

The evolution of blomar CLU slgol\\llery from descriptive
correlation-based networks to causal and deep phenotyping
frameworks represents a significant maturation in neurodegen-
erative research . However, the clinical utility of these models
remains stalled by a fundamental reproducibility crisis, where
“black box™ Al trained on siloed datasets fails to generalize
. To bridge this gap, future ICT convergence research must
prioritize auditability and interpretability as core engineering
requirements. Specifically, we identify the adoption of Feder-
ated Learning (FL) architectures as the critical next step; FL
enables the training of complex, data-hungry models across
multi-institutional cohorts without compromising patient pri-
vacy, ensuring that Al-driven biomarkers are robust, unbiased,

and clinically trustworthy .
NOWLEDGMENT

This work was partly suﬁ)orted by Innovative Human Resource Development for
Local Intellectualization program through the IITP grant funded by the Korea government
(MSIT) (ITTP-2025-RS-2020-11201612, 33%) and by Priority Research Centers Program
through the NRF funded by the MEST (2018R1A6A1A03024003, 33%) and by the
MSIT, Korea, under the ITRC supﬁ) l%ram (IITP 2025-RS-2024-00438430, 34%)).

ENCES

[11 Z. Jiang, H. Zhang, Y. Gao, and Y. Sun, “Multi-omics strategies
for biomarker discovery and application in personalized oncology,”
Molecular Biomedicine, vol. 6, no. 1, p. 115, 2025.

[2] M. B. McDermott, S. Wang, N. Marinsek, R. Ranganath, L. Foschini,
and M. Ghassemi, “Reproducibility in machine learning for health
research: Still a ways to go,” Science translational medicine, vol. 13,
no. 586, p. eabb1655, 2021.

[3] M. Wang, P. Roussos, A. McKenzie, X. Zhou, Y. Kajiwara, K. J.
Brennand, G. C. De Luca, J. F. Crary, P. Casaccia, J. D. Buxbaum
et al., “Integrative network analysis of nineteen brain regions identifies
molecular signatures and networks underlying selective regional vulner-
ability to alzheimer’s disease,” Genome medicine, vol. 8, no. 1, p. 104,
2016.

[4] B. Zhang, C. Gaiteri, L.-G. Bodea, Z. Wang, J. McElwee, A. A.
Podtelezhnikov, C. Zhang, T. Xie, L. Tran, R. Dobrin et al., “Integrated
systems approach identifies genetic nodes and networks in late-onset
alzheimer’s disease,” Cell, vol. 153, no. 3, pp. 707-720, 2013.

[51 V.1 Kanu, J. Isong, S. O. Ajakwe, T. Jun, and D.-S. Kim, “Blockchain-
enabled framework for efficient and interoperable proteomic data man-
agement,” in 2025 Sixteenth International Conference on Ubiquitous and
Future Networks (ICUFN). 1EEE, 2025, pp. 666-671.

[6] P. Kodam, R. Sai Swaroop, S. S. Pradhan, V. Sivaramakrishnan, and
R. Vadrevu, “Integrated multi-omics analysis of alzheimer’s disease
shows molecular signatures associated with disease progression and
potential therapeutic targets,” Scientific reports, vol. 13, no. 1, p. 3695,
2023.

[71 H. Anzum, N. S. Sammo, and S. Akhter, “Leveraging transformers
and explainable ai for alzheimer’s disease interpretability,” PLoS One,
vol. 20, no. 5, p. 0322607, 2025.

[8] A. Halama, S. Zaghlool, G. Thareja, S. Kader, W. Al Muftah, M. Mook-
Kanamori, H. Sarwath, Y. A. Mohamoud, N. Stephan, S. Ameling et al.,
“A roadmap to the molecular human linking multiomics with population
traits and diabetes subtypes,” Nature communications, vol. 15, no. 1, p.
7111, 2024.

[91 V. L. Kanu, S. O. Ajakwe, J. M. Lee, and D.-S. Kim, “Deterministic

protein structure and binding site analysis through blockchain-integrated

workflow verification,” ICT Express, 2025.

M. Pilarczyk, M. Fazel-Najafabadi, M. Kouril, B. Shamsaei, J. Vasil-

iauskas, W. Niu, N. Mahi, L. Zhang, N. A. Clark, Y. Ren et al.,

“Connecting omics signatures and revealing biological mechanisms with

ilincs,” Nature communications, vol. 13, no. 1, p. 4678, 2022.

(10]



	introduction
	AI-driven biomarker discovery in neurodegeneration
	reproducibility challenges in biomarker discovery
	toward deterministic and auditable AI pipelines
	conclusion
	References

