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요 약  
본 논문은 차세대 IEEE 802.11bn (Wi-Fi 8) 환경에서 독립적으로 운영되는 다중 엑세스 

포인트(AP) 네트워크의 분산 최적화를 위한 QA-FedDQN (Quality-Aware Adaptive 

Federated Deep Q-Network)을 제안한다. 기존 연합 평균화(FedAvg)는 데이터 양만을 
기준으로 클라이언트 업데이트를 집계하여 데이터 품질이나 네트워크 이질성을 고려하지 

못한다. QA-FedDQN 은 데이터 양, 보상 기반 품질, TD-error 기반 네트워크 안정성을 통합한 

적응적 집계 전략을 채택한다. 5 회 반복 실험 결과 QA-FedDQN 은 FedAvg 대비 전체 평균 

1.2 향상과 가장 낮은 표준편차(1.3)로 높은 재현성을 달성하며, 처리량 748.0 Mbps(9.2% 
향상), 지연 6.64 ms(13.8% 개선), Fairness σ=5.7로 최고 네트워크 성능을 보이고, 중앙집중식 

대비 98% 빠른 수렴을 달성한다. 

Ⅰ. 서 론  

차세대 무선랜 표준인 IEEE 802.11bn (Wi-Fi 8)은 

초고밀도 환경에서 극한 신뢰성(Ultra High Reliability)을 
목표로 한다[1]. 기업, 공항, 스타디움과 같은 고밀도 

환경에서 다수의 독립 운영 AP 가 동일 공간에 배치되며, 

각 AP 는 상이한 트래픽 패턴, 간섭 수준, 사용자 분포를 

경험한다. 중앙집중식 제어는 AP 간 조정 오버헤드와 
단일 장애점 문제를 야기하며, 독립 학습은 비효율적 

자원 활용과 느린 수렴을 초래한다. 

기존 FedAvg 는 클라이언트가 수집한 데이터 양에만 

비례하여 업데이트를 집계한다[2]. 무선 네트워크 

환경에서 AP 별 데이터 품질은 크게 상이하며[3], 높은 
간섭을 겪는 AP 는 많은 데이터를 수집하더라도 낮은 

품질의 학습 경험을 제공한다. 심층 강화학습을 

연합학습과 결합한 연구는 존재하나[4], 대부분 균일 

평균화를 사용하여 클라이언트 품질 차이를 무시한다. 

본 연구는 데이터 양, 보상 기반 품질, TD-error 기반 
안정성을 통합한 품질 인식 적응적 집계 메커니즘을 

제안한다. QA-FedDQN (Quality-Aware Adaptive 

Federated Deep Q-Network)은 각 AP 가 채널 선택, 

전송 전력 조정, QoS 전략을 독립 학습하면서 품질 가중 

협력적 지식을 공유한다. IEEE 802.11bn MAC 계층 

시뮬레이션을 통해 EDCA, OFDMA, A-MPDU, CSR 을 
포함한 실제 환경을 재현한다[5]. 

Ⅱ. QA-FedDQN 

2.1 시스템 아키텍처 

각 AP 𝑖는 Q-네트워크 𝑄!!(𝑠, 𝑎)를 유지하며 로컬 경험 

(𝑠", 𝑎"	, 𝑟", 𝑠{"$%})을 재생 버퍼 𝒟'에 저장한다. 상태 공간은 

네트워크 메트릭(큐 길이, 채널 사용률, SINR, 처리량, 

지연), MAC 계층 통계(전송 성공률, 프레임 집합화율), 

Per-AC 큐 길이를 포함한다. 행동 공간은 8 개 채널, 

4 단계 전력, 3 가지 QoS 전략의 조합으로 96 개 이산 
행동을 형성한다. 

2.2 품질 인식 집계 

연합학습 라운드 𝑘 에서 서버는 𝑁 개의 로컬 모델 
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그림 1. QA-FedDQN 시스템 아키텍처. 각 AP 는 로컬 DQN 에이전트로 독립 학습하며, 서버는 품질 가중 집계로 글로
벌 모델을 업데이트한다. 



 

여기서 𝛼'( = |𝒟'|/∑ 5𝒟+5+ 는 데이터 양 비율, 𝛽'( = 𝜙'(/
max
+
𝜙+(는 품질 지표(𝜙'( = 0.5 ⋅ 	 𝑟̅'( + 0.25 ⋅ ΘC'( + 0.25 ⋅ D1 −

𝐷C'(H ), 𝜁'( = 1/D1 + 𝛿'̅(H 는 TD-error 기반 안정성 

지표이다. 하이퍼파라미터 𝜆%, 𝜆,, 𝜆- 는 세 기준의 상대적 

중요도를 조절한다. 
Ⅲ. 실험 및 결과 

3.1 실험 설정 

모든 시나리오는 IEEE 802.11ax enhanced WiFi 

환경(8 채널, 20 MHz 대역폭, 4 단계 전송 전력 [10, 15, 
20, 23 dBm], 20 스테이션)에서 실행한다. DQN 

하이퍼파라미터는 학습률 0.0015, 할인율 0.99, 배치 

크기 256, ε-greedy (1.0→0.005, decay 0.995)로 

통일한다. 각 시나리오를 seed 42-46 으로 5 회 반복 

실행한다. 중앙집중식은 단일 에이전트가 150 에피소드 
학습하며, FedAvg는 3개 AP가 샘플 수 기반 집계로 50 

라운드 학습한다. QA-FedDQN 은 동일한 3 개 AP 로 

적응적 가중치 집계( 𝜆% = 0.5, 𝜆, = 0.3, 𝜆- = 0.2 $)를 

수행한다. 통신 효율성 시나리오는 35 라운드, 로컬 
에피소드 20 으로 설정하고, 이질적 클라이언트 

시나리오는 AP 별 로컬 에피소드 수를 

차등화(21/15/9)하며, 확장성 시나리오는 AP 수를 

6 개로 확장한다. 

3.2 성능 비교 

표 1. 시나리오별 학습 성능 비교 

방법 수렴 
최대 

보상 

전체 

평균 
공정성 

𝜎 

중앙 집중식 
146.0 

±0.0 

907.9 

±2.0 

714.0 

±14.4 
- 

FedAvg 
2.4 

±0.9 

820.8 

±6.3 

808.8 

±2.3 

6.0 

±0.7 

QA-

FedDQN 

2.2 

±0.8 

819.8 

±2.3 

810.0 

±1.3 

5.7 

±0.9 

통신 효율성 
2.4 

±0.9 

821.4 

±4.9 

809.2 

±1.7 

5.8 

±1.1 

이질성 

시나리오 

4.4 

±1.8 

822.1 

±3.6 

812.4 

±1.4 

6.4 

±2.0 

확장성 

시나리오 

2.0 

±0.7 

819.5 

±2.7 

809.0 

±0.8 

7.1 

±0.6 

연합학습 방법은 중앙집중식 대비 98% 빠른 수렴(146 

→ 2-4 라운드)을 달성하며, QA-FedDQN 은 2.2±0.8 
라운드로 FedAvg 대비 8% 빠른 수렴을 보인다. QA-

FedDQN 은 전체 평균 표준편차 1.3 으로 가장 높은 

재현성을 달성하며, 중앙집중식(71.6)과 FedAvg(2.3) 

대비 현저히 낮은 분산을 보인다.  

 
그림 2. 시나리오별 학습 곡선 비교.  
그림 2 는 시나리오별 학습 곡선을 시각화하여 나
타낸다. 모든 연합학습 시나리오가 초기 3-5 라운드 
내 빠른 수렴을 보이며 안정적인 성능을 유지한다. 
QA-FedDQN(파란색)은 FedAvg(녹색) 대비 더 안정
적인 학습 곡선을 보이며, 이질적 클라이언트(주황
색)는 가장 높은 평균 보상(812.4)으로 수렴한다. 통
신 효율성(빨간색)은 적은 라운드 수에도 불구하고 

안정적인 성능을 보인다. 확장성 시나리오(청록색, 6 
AP)는 빠른 수렴과 낮은 분산으로 스케일러빌리티
를 입증한다. 95% 신뢰구간(음영)이 좁아 높은 재현
성을 확인할 수 있다. 

 
그림 3. 시나리오별 네트워크 성능 
그림 3 은 시나리오별 네트워크 성능을 보여준다. 

QA-FedDQN 은 처리량 748.0 Mbps 로 최고 데이터 
전송률을 달성하며 FedAvg 대비 9.2% 향상을 보인
다. 지연은 6.64 ms 로 FedAvg(7.70 ms) 대비 13.8% 
개선되었다. 이질적 클라이언트 시나리오는 처리량 
755.8 Mbps 로 가장 높은 값을 기록하며, 확장성 시
나리오는 지연 3.79 ms 로 가장 우수한 응답성을 보
인다. Fairness σ=5.7로 AP 간 가장 공정한 자원 분배
를 실현한다. 
Ⅳ. 결론 

본 논문은 독립 배치 다중 AP WiFi 네트워크를 위한 
QA-FedDQN 을 제안한다. 데이터 양, 보상 기반 품질, 

TD-error 기반 안정성을 통합한 적응적 집계는 

FedAvg 의 한계를 극복한다. QA-FedDQN 은 FedAvg 

대비 전체 평균 1.2 향상과 가장 낮은 표준편차(1.3)로 
높은 재현성을 달성하며, 처리량 748.0 Mbps(9.2% 향상), 

지연 6.64 ms(13.8% 개선), Fairness σ=5.7 로 최고 

네트워크 성능을 보인다. 중앙집중식 대비 98% 빠른 

수렴을 달성하며, 확장성과 이질성 환경에서 강건한 

성능을 유지한다. 제안 방법은 통신 오버헤드를 
최소화하고 공정한 자원 분배를 실현하여 차세대 WiFi 

네트워크 분산 최적화에 기여한다. 
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