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요 약  

 
본 논문에서는 반복적인 수학적 최적화 알고리즘을 딥러닝 모델로 근사하여 추론 복잡도를 줄이는 동시에, 제약 조건을 

신경망 구조에 직접 포함한 end-to-end 딥러닝 기반 최적화 프레임워크를 제안한다. 제안된 프레임워크는 downlink 

MISO 시스템의 SINR balancing 문제를 대상으로, uplink 전력 벡터를 학습 목표로 두어 저차원 해 공간에서 학습함으로써 

근사 오차를 감소시키고, duality 에 의한 수학적 변환을 통해 대응되는 downlink 의 고차원 해를 도출한다. 생성된 전력 

벡터에 대한 제약 조건을 신경망 구조에 내재함으로써 학습 추론 간 불일치를 제거한다. 수치 실험을 통해 제안한 방법이 

최적 SINR margin 을 효과적으로 근사함을 보이고, 제약 조건을 내재한 학습 구조의 중요성을 확인하였다. 

 

Ⅰ. 서 론  

무선 통신 시스템에서는 자원 할당, 빔포밍, 전력 

제어와 같은 문제들을 해결하기 위해 다양한 수학적 

최적화 기반 알고리즘들이 연구되어 왔다. 이러한 

접근법들은 통신 시스템의 구조와 신호 모델을 반영하여 

설계되었으며, 반복적인 최적화 기법이나 이론적 분석을 

통해 우수한 성능을 보이는 것으로 알려져 있다. 그러나 

이러한 알고리즘들은 일반적으로 반복 계산에 따른 높은 

연산 복잡도와 계산 지연을 수반하며, 시스템 규모가 

커질수록 실제 적용에 부담이 되는 한계가 존재한다. [1] 

이러한 한계를 극복하기 위해 딥러닝 기반 최적화 

근사 기법들이 활발히 연구되고 있다. 딥러닝 모델은 

오프라인 학습을 통해 최적화 문제의 해를 직접 

근사함으로써, 추론 단계에서 매우 낮은 계산 복잡도와 

빠른 응답 시간을 제공할 수 있다는 장점을 가진다. 

그러나 기존의 딥러닝 기반 통신 최적화 기법들은 

대부분 제약 조건을 만족하지 못하는 해를 생성하는 

문제를 지니고 있으며, 이로 인해 전력 제약이나 SINR 

제약을 위반하는, 통신 시스템에 치명적일 수 있는 해가 

도출될 수 있다. [2] 

본 논문에서는 이러한 한계를 극복하기 위해, 제약 

조건 만족 연산을 신경망의 하나의 레이어로 포함하여 

end-to-end 로 학습하는 구조를 제안한다. 제안하는 

구조에서는 제약 조건 만족 과정이 학습 그래프 내에 

포함되므로, 신경망은 제약을 고려한 상태에서 직접 

최적화 목표를 학습하게 된다. 이는 기존의 후처리 기반 

딥러닝 알고리즘과 달리, 학습과 추론 단계 간의 

불일치를 제거하고 제약 조건을 내재적으로 반영한 해를 

생성할 수 있게 한다. 시뮬레이션 결과를 통해, 제안한 

구조가 기존의 후처리 방식 딥러닝 기반 알고리즘 대비 

더 우수한 성능과 안정적인 제약 조건 만족 특성을 

보임을 확인하였다. 

 

Ⅱ. 시스템 모델  

본 논문에서는 기지국이 𝑀 개의 송신 안테나를 갖고 

𝐾명의 단일 안테나 사용자를 고려하는 downlink MISO 

시스템을 다룬다. 사용자 𝑖 의 빔포밍 행렬을 𝑈 , 전력 

벡터를 𝑝, downlink SINR 을 𝑆𝐼𝑁𝑅𝑖
𝐷𝐿(𝑈, 𝑝)로 정의할 때, 

각 사용자에 대해 미리 주어진 목표 SINR 인  𝛾𝑖 는 

사용자 간의 상대적인 SINR 요구 수준을 나타낸다. 이때 

SINR margin 은 모든 사용자에 대해 목표 SINR 대비 

실제 SINR의 비율 중 최소값으로 정의된다. 본 논문에서 

고려하는 문제는 총 송신 전력 제약 하에서 SINR 

margin 을 최대화하는 빔포머 행렬 𝑈와 전력 할당 벡터 

𝑝를 찾는 것이다. 이는 (1)과 같은 형태의 최적화 문제로 

정리된다. [3] 

max
𝑼, 𝒑

min
1≤𝑖≤𝐾

𝑆𝐼𝑁𝑅𝑖
𝐷𝐿(𝑈, 𝑝)

𝛾𝑖
      𝑠. 𝑡.  ||𝑝||1 ≤ 𝑃𝑚𝑎𝑥              (1) 

 

Ⅲ. 제약 조건 내재형 학습 프레임워크 

본 논문에서는 제약 조건이 신경망 구조에 내재된 

end-to-end 딥러닝 기반 최적화 프레임워크를 제안한다. 

제안하는 방법은 먼저 uplink–downlink duality 를 

기반으로 수학적 최적화 알고리즘으로부터 학습 

데이터를 생성하고, 이를 이용해 CNN 을 학습하는 

방식으로 구성된다. 통신 시스템의 구조적 특성을 

활용하여 학습 대상의 차원을 축소하며, downlink 

빔포머와 같이 고차원의 변수를 직접 예측하는 대신, 

차원이 상대적으로 작은 uplink 전력 벡터를 학습 

대상으로 설정한다. Uplink–downlink duality 에 따르면 

uplink 전력 벡터가 주어질 경우 이에 대응하는 

downlink 빔포머와 전력 할당을 유도할 수 있으므로, 

CNN 은 uplink 전력 벡터를 예측하고 예측 결과는 



conversion layer 라 불리는 수학적 변환을 통해 

downlink 최적해로 변환된다. 

단순한 CNN 기반 전력 벡터 예측은 전력 제약과 같은 

제약 조건을 만족하지 못하는 해를 생성할 수 있다. 기존 

연구인 [2]에서는 이러한 문제를 해결하기 위해 신경망 

출력 이후에 후처리 방식으로 제약 조건을 만족시키는 

방법을 사용해왔다. 그러나 이러한 접근법은 추론 

단계에서만 제약 조건을 만족시키며, 학습 과정에는 제약 

조건이 직접 반영되지 않는다. 그 결과 학습과 추론 단계 

간의 불일치가 발생하고, 이는 성능 저하로 이어질 수 

있다. 

 
그림 1. 제약조건 내재형 end-to-end 학습 프레임워크 

 

본 논문에서는 이러한 문제를 해결하기 위해 제약 

조건 만족 연산을 신경망의 하나의 레이어로 포함하는 

end-to-end 학습 구조인 그림 1 을 제안한다. 제안하는 

구조에서는 제약 조건이 학습 과정에 직접 포함되므로, 

신경망은 제약 조건이 반영된 상태에서 최적화 목표를 

학습한다. 이를 통해 학습과 추론 단계 간의 불일치를 

제거하고, 제약 조건을 내재적으로 만족하는 해를 

안정적으로 생성할 수 있다. 

 

IV. 실험결과 

본 논문에서는 기존의 수학적 최적화 알고리즘인 교대 

최적화를 통해 구한 SINR margin 의 최적해를 기준으로, 

Zeroforcing 기반 해, [2]의 알고리즘인 후처리 방식의 

딥러닝 기반 근사해, 그리고 제약 조건 내재형 딥러닝 

기반 근사해의 성능을 비교한다. 수치 실험 결과, 그림 

2 의 성능 그래프에서 보이듯이 주어진 총 송신 전력 

𝑃𝑚𝑎𝑥 하에서 모든 딥러닝 기반 근사 기법이 최적 SINR 

margin 을 전반적으로 잘 근사함을 확인할 수 있었다. 

특히 제약 조건 내재형 구조는 후처리 방식 대비 작은 

차원에서도 일관되게 더 우수한 근사 성능을 보였다. 

또한 표 1 의 결과에서 보이듯이 시스템 차원이 

증가함에 따라 후처리 방식의 성능은 점차 저하되는 

반면, 제약 조건 내재형 구조는 최적해에 근접한 성능을 

유지함을 확인하였다. 이는 후처리 방식의 경우 학습 

단계와 추론 단계 간의 불일치로 인해 발생한 오차가 

차원 증가에 따라 누적 및 증폭되는 반면, 제약 조건 

내재형 구조에서는 제약 조건이 학습 과정에 직접 

포함되어 있어 이러한 오차 전파가 효과적으로 억제되기 

때문으로 해석할 수 있다.  

 

표 1. 시스템 차원 크기에 따른 성능 비교 

 

 

 

그림 2. 송신 전력에 따른 SINR balancing 성능 비교 
 

V. 결론 

본 논문에서는 downlink MISO 시스템의 SINR 

balancing 문제를 대상으로, uplink–downlink duality 에 

기반한 제약 조건 내재형 end-to-end 딥러닝 최적화 

프레임워크를 제안하였다. 수치 실험을 통해 제안한 

방법이 반복적인 수학적 최적화 알고리즘으로 구한 최적 

SINR margin 을 잘 근사함을 확인하였으며, 후처리 방식 

대비 작은 시스템 차원에서는 일관되게 우수한 성능을 

보이고, 시스템 차원이 증가하는 경우에도 최적해에 

근접한 성능을 안정적으로 유지함을 확인하였다. 이러한 

결과를 통해 제약 조건을 신경망 구조에 내재하는 

접근법의 중요성을 확인하였다. 향후 연구에서는 전력 

제약을 넘어 QoS 제약과 같은 보다 복잡하고 현실적인 

제약 조건을 내재적으로 만족하는 방향으로 연구를 

확장할 예정이다. 
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System Dimensions  

(M, K) 

MSE 

(Without Scaling Layer) 

MSE 

(With Scaling Layer) 

(6, 5) 0.3326 0.0906 

(40, 36) 1.8018 0.0260 


