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Abstract—Internet of Medical Things (IoMT) deployments
increasingly rely on federated learning (FL) to train clinical
models without centralizing patient data. Yet three practical
risks remain: (i) ‘“harvest-now, decrypt-later” interception that
breaks long-term confidentiality once quantum computers ma-
ture, (ii) traffic-analysis leakage where packet size and timing
fingerprints reveal the participating client, and (iii) poisoning by
malicious participants. This study presents Forward-Secrecy-at-
Scale (FS?)-PQC-FL, a post-quantum secure aggregation pipeline
that adds lightweight per-round forward secrecy via a symmetric
ratchet, and metadata-aware traffic shaping to reduce client-
identification leakage. FS?-PQC secure aggregation achieves
order-of-magnitude latency gains over CKKS fully homomorphic
encryption (up to 38x speedup) while remaining compatible with
heterogeneous IoMT devices, and robust aggregation (Trimmed-
Mean/Krum) mitigates poisoning-induced accuracy collapse for
ECG arrhythmia FL.

Index Terms—Federated learning, Forward secrecy, IoMT,
Post-quantum cryptography, Secure aggregation, Traffic analysis.

I. INTRODUCTION

Federated Learning (FL) facilitates collaborative training
across hospitals and Internet of Medical Things (IoMT) de-
vices while maintaining data locality [[1]]. This is vital for
high-volume physiological monitoring under strict privacy
constraints [2f]. However, data locality alone is insufficient;
communication patterns and model updates remain vulnerable
to three critical threats: (i) Quantum Adversaries utilizing
“harvest-now, decrypt-later” (HNDL) attacks [3[]; (ii)) Meta-
data Leakage via side-channels that reveal clinical behaviors;
and (iii) Inference and Poisoning attacks that extract private
features or degrade diagnostic accuracy [4]. Current Secure
Aggregation (SecAgg) protocols often lack forward secrecy; a
future compromise of long-term keys could expose historical
clinical data. While Post-Quantum Cryptography (PQC) is
gaining traction in FL, there remains a need for a system-
level design that simultaneously ensures quantum resilience,
per-round forward secrecy, and robustness to IoMT device
dropouts with minimal overhead.To address this, we propose
FS2-PQC-FL, a framework for forward-secure, post-quantum
FL at scale. Our contributions include:

1) FS2-PQC-FL Architecture: A SecAgg design using
ML-KEM and ML-DSA that ratchets fresh per-round
keys to ensure forward secrecy.
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Fig. 1: PFS2-PQC-FL system architecture

2) Robust Privacy: An aggregation workflow that pre-
serves confidentiality and correctness despite intermit-
tent device participation (dropouts).

3) Side-Channel Mitigation: A metadata-aware schedul-
ing strategy using constant-rate and constant-size trans-
missions.

4) Performance Evaluation: Benchmarks against Homo-
morphic Encryption (CKKS) demonstrating efficiency
and robustness under adversarial conditions.

II. SYSTEM METHODOLOGY

Cross-silo federated learning (FL) is used for IoMT de-
ployments, where a central orchestrator S (e.g., a hospital
cloud coordinator) coordinates 7' training rounds across [V
clients Cq,...,Cp. Each client i holds private data D; and
computes an update A’ for the global model w’. The threat
model encompasses: (1) a global passive eavesdropper with
future quantum capability (HNDL), (2) an observer targeting
traffic metadata (size and timing), and (3) up to f Byzantine
clients injecting poisoned updates.

Key Establishment (PQC): Clients authenticate control
messages via post-quantum signatures (ML-DSA) and de-
rive confidentiality keys through a post-quantum KEM (ML-
KEM). To achieve forward secrecy without per-round public-
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Fig. 2: PQC-SecAgg vs. CKKS-FHE total execution time (log-
scale) and derived speedup as the number of clients increases.

key overhead, KEM-derived material is combined with a one-
way symmetric ratchet:

k! « KDF(Decaps(ct!), r!), rit'« H(rl). (1)

Compromise of current secrets does not reveal past keys
provided H(-) is one-way and KDF is a PRF.
Secure Aggregation: Each client transmits a masked up-

date: ~
AL = ALyl ml e« PRG(K). @)

The server aggregates these updates and cancels masks using
dropout-tolerant recovery to compute » . A’ without exposing
individual A, maintaining near-linear cost in N.

Metadata Protection: As payload confidentiality alone
does not hide traffic patterns, FS2-PQC-FL enforces fixed
packet sizes through padding, constant inter-round schedul-
ing with bounded jitter, and client-side batching, informed
by the leakage trends. FS?-PQC-FL provides post-quantum
confidentiality for session material via ML-KEM and authen-
ticated control messaging via ML-DSA. Computational cost is
dominated by KEM decapsulation and symmetric KDF/PRG
operations at clients, while the server performs linear-time
aggregation with conditional recovery, supporting scalable
operation under IoMT constraints. Figure [1| shows the PFS2-
PQC-FL system architecture.

III. PERFORMANCE EVALUATION
A. PQC-SecAgg vs. CKKS-FHE

Fig. 2] compares total execution time as clients scale and
reports speedup of PQC-SecAgg over CKKS-FHE. PQC-
SecAgg stays in the few—tens of milliseconds range at N <
100, while CKKS incurs two to three orders of magnitude
higher latency, yielding ~10x-38x speedups depending on
model dimension and cohort size. The gap widens with
larger vectors due to ciphertext expansion and the costs of
homomorphic arithmetic.

B. Robustness Under Poisoning

Fig. [3] evaluates ECG arrhythmia FL under poisoning.
FedAvg under attack degrades sharply, while TrimmedMean
and Krum recover much of the accuracy, typically maintaining
~80%—88% in later rounds. This highlights that confidentiality
(secure aggregation) must be complemented by robustness
for clinical trust. The comparison in Table [I] shows that the
proposed PQC-secure aggregation achieves the lowest runtime
(0.28-0.46 ms) compared to recent HE/PQ baselines while
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Fig. 3: ECG arrhythmia FL accuracy under poisoning: robust
aggregators mitigate degradation compared to FedAvg.
TABLE I: Performance comparison with recent related work.

Study Technique Runtime (ms) Robustness

[T CKKS HE 1.85-4.44 Not primary

[ 15 Synthetic updates 1.25-1.79 Poisoning-resilient
[4] PQ cross-silo FL 1.12-2.31 Not primary
This work | PQC-secure agg 0.28-0.46 Poisoning-resilient

maintaining poisoning resilience. In contrast, prior works
mainly optimize confidentiality or system efficiency, and ro-
bustness against poisoning is not consistently treated as a
primary objective across all baselines.

IV. CONCLUSION

FS2-PQC-FL advances practical post-quantum FL for IoMT
by coupling PQC secure aggregation with lightweight forward
secrecy and metadata-aware traffic shaping. Compared with
CKKS-FHE aggregation, the PQC-SecAgg path achieves con-
sistent order-of-magnitude speedups while remaining compat-
ible with heterogeneous clients. Future work will formalize
metadata leakage bounds and integrate adaptive padding that
preserves QoS in emergency-care scenarios.
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