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요 약  

 
본 논문은 제지 공정 강화학습 기반 공정 제어에서 평균 성능뿐 아니라 드물게 발생하는 최악 상황의 손실, 즉 꼬리 

위험(tail risk)을 함께 고려하기 위해 GMM(Gaussian Mixture Model) 기반 OOD(Out-of-Distribution) 감지와 계층적 

안전 스위칭 정책을 제안한다. GMM 을 활용하여 학습 분포에서 벗어난 이상 상태(OOD)를 감지하고, 압력이 안전 경계 

근처인 위험 구간을 식별하며, 정상 상태에서는 압력 기반으로 PPO(Proximal Policy Optimization)와 SAC(Soft Actor-

Critic) 정책을 선택한다. OOD 상태이거나 압력 위험 구간에서는 보수적인 SAC 정책을 강제하여 안전성을 확보한다. 실험 

결과, 제안 방법은 기존 GMM OOD 단독 방법 대비 Mean Return 을 유지하면서 CVaR(Conditional Value-at-Risk)을 -

58.71 에서 -24.37 로 34 점 개선하였으며, 표준편차도 37.23 에서 24.89 로 감소하여 정책의 안정성이 향상되었다. 

 

Ⅰ. 서 론  

최근 강화학습이 공정 제어에 적용되고 있으나, 대부분 

평균 보상 중심으로 평가하여 드물게 발생하는 꼬리 

위험에 대한 고려가 부족하다[1]. 특히 실제 공정에서는 

학습 시 경험하지 못한 새로운 운전 조건이 발생할 수 

있으며, 이러한 OOD(Out-of-Distribution) 상태에서 

공격적인 정책을 적용하면 심각한 성능 저하나 안전 

위반이 발생할 수 있다. 또한 압력이 안전 범위의 경계에 

근접한 상황에서는 작은 제어 오차도 안전 위반으로 

이어질 수 있어 별도의 안전 장치가 필요하다. 본 논문은 

이러한 문제를 해결하기 위해 GMM(Gaussian Mixture 

Model) 기반 OOD 감지와 압력 경계 안전 메커니즘을 

결합한 계층적 안전 스위칭 정책을 제안하며, 

CVaR(Conditional Value-at-Risk) 기반 위험 지표로 

정책의 꼬리 위험 관리 효과를 분석한다. 

PPO(Proximal Policy Optimization)는 클리핑 기반 

on-policy 알고리즘으로 안정적인 정책 업데이트를 

제공한다[2]. SAC(Soft Actor-Critic)는 최대 엔트로피 

기반 off-policy 알고리즘으로 탐색과 활용의 균형을 

유지하고, 확률적 정책을 통해 제어 입력이 과도하게 

치우치는 것을 억제하는 특성이 있다[3]. GMM은 데이터 

분포를 여러 개의 가우시안 분포의 혼합으로 모델링하는 

방법으로, 밀도 추정 및 이상 감지에 널리 활용된다[4]. 

새로운 데이터 포인트의 log-likelihood를 계산하여 학습 

분포에서 벗어난 정도를 정량화할 수 있다. CVaR 은 

VaR(Value-at-Risk) 이하 구간의 평균으로 정의되며, 

꼬리 위험을 정량화하는 일관된 위험 측도로 활용되기 

때문에[5], 하위 10% 에피소드의 평균 Return 을 

CVaR(10%)로 정의한다. 

Ⅱ. 제안 방법 

2.1 문제 정의 

 제지 공정은 MDP(Markov Decision Process)로 

모델링되며, 상태 s 는 [생산단계, 속도, 압력, 평량, 유량, 

수분]으로 구성한다. 행동 a는 [Δ속도, Δ압력, Δ유량]의 

변화량이며, 보상은 생산량, 수분, 평량, 에너지 항의 

가중 합으로 정의한다. 압력 안전 범위는 [0.7, 3.7]로 

정의하며, 범위 이탈 시 위반(high pressure violation, 

highV)으로 집계한다. 

2.2 계층적 안전 스위칭 정책 

그림 1 에서 제안 방법은 세 단계의 계층적 의사결정 

구조를 갖는다.  

 
[그림 1] 제안 방법 계층적 의사결정 구조 

 



학습 데이터로 K 개(K=5)의 가우시안 분포를 혼합한 

GMM 을 학습한다. 새로운 상태 s 에 대해 OOD 점수는 

다음과 같다.  

 
𝑠𝑐𝑜𝑟𝑒(𝑠) =  −𝑙𝑜𝑔 𝛴𝑘 𝜋𝑘  ·  𝑁(𝑠 |𝜇𝑘 , 𝛴𝑘) 

 

상태 𝑠 가 각 가우시안 컴포넌트 𝑘 에서 관측될 

확률밀도( 𝒩(𝑠 ∣ 𝜇𝑘 , Σ𝑘) )를 혼합 가중치 𝜋𝑘 로 가중합 해, 

전체 확률밀도를 계산한다. OOD 점수는 score(𝑠) 로 

정의하며, 학습 분포에서의 likelihood(데이터가 분포에서 

나왔을 확률)가 낮을수록 score 가 커져 OOD 정도를 

정량화한다. 학습 데이터에서 계산한 OOD 점수의 

95 백분위수를 임계값(θ)으로 설정하고, score(s) > θ 인 

경우 OOD 로 판단한다. 또한 압력이 안전 범위의 경계에 

근접하면 위험 구간으로 판단한다. 

𝑂𝑂𝐷   =  (𝑝 <  𝑝𝑚𝑖𝑛 +  𝑚) ∨ (𝑝 >  𝑝𝑚𝑎𝑥 −  𝑚) 

=  (𝑝 <  1.0) ∨  (𝑝 >  3.4)     

OOD 도, 위험 구간도 아닌 정상 상태에서는 압력 

임계값 τ=3.0 을 기준으로 정책을 선택한다. 

2.3 설계 근거 

PPO 는 성능 최적화를 위해 압력을 한계까지 

밀어붙이는 경향이 있다. 안전 한계값 주변에 버퍼 

구간을 추가해 경계 구간에서 안전 정책으로 변환시키는 

파라미터(Margin)를 두고 미리 SAC 로 전환하여 안전 

위반을 예방한다. 실험 결과 고압 구간(p > 3.0)에서는 

PPO 가, 정상 구간에서는 SAC 가 더 나은 성능을 보여 

이를 반영한다. 

2.4 검증 프로토콜  

데이터 누수 방지를 위해 LOT 단위로 Train(80%)과 

Holdout(20%)을 분리한다. GMM 은 Train 데이터로 

학습하며, 하이퍼파라미터(τ, m)는 Train 에서 그리드 

탐색으로 선정하고 Holdout 에서 최종 성능을 평가한다. 

Ⅲ. 실험 결과  

3.1 실험 설정  

2022년 제지 공정 데이터를 LOT 단위로 분리하고 50 

에피소드, 최대 100 step 으로 평가를 수행하며, 평가 

지표는 Mean Return(에피소드 평균 리워드), CVaR(10%), 

Std, highV 이다. 또한 GMM 은 5 개의 가우시안 

컴포넌트로 구성하며, 학습 데이터 10,000 개 상태로 

학습한다. 

3.2 비교 분석 

Method Mean CVaR Std highV 

GMM only 32.06 -58.71 37.23 286 

Proposed 32.16 -24.37 24.89 300 

[표 1] GMM 만 썼을 때와 제안 방법 성능 비교 

 

표 1 에서 제안 방법은 GMM 만 쓰는 학습 방법 대비 

Mean +0.1, CVaR +34.34, std -12.34, highV 

+14 인 결과를 보인다. 

 

Margin Mean CvaR highV 

0.00 2.06 -58.71 286 

0.3 32.16 -24.37 300 

0.5 27.41 -65.92 520 

[표 2] Margin 에 따른 성능 비교 

 

표 2 에서 Margin 에 따른 Mean, CVaR, highV 값을 

비교한 결과, Margin 이 너무 크면 안전 구간이 지나치게 

좁아져 성능이 저하되기 때문에, 0.3 일 때 최적의 균형을 

보인다. 

3.3 위험-수익 분석  

 
[그림 2] 제안 정책 위험-수익 성능 개선 

그림2에서 Margin을 0.5와 τ를 3.4로 설정한 정책은 

상대적으로 낮은 위험-수익 성능을 보이며, GMM만 쓰는 

정책에 비해 제안 방법은 Mean-CVaR 공간에서 

우상단으로 +34.34 이동하여 평균 성능을 유지하면서 

꼬리 위험을 효과적으로 감소시킨다. 

Ⅳ. 결 론  

본 논문은 제지 공정 강화학습에서 꼬리 위험을 

관리하기 위해 GMM 기반 OOD 감지와 압력 경계 안전 

메커니즘을 결합한 계층적 안전 스위칭 정책을 제안한다. 

제안 방법은 세 단계의 의사결정 구조를 통해 학습 분포 

이탈 상태, 압력 위험 구간, 정상 운전 구간을 구분하고, 

각 상황에 적합한 정책을 선택한다. 

실험 결과, 평균 성능을 유지하면서 CVaR(10%)을 

34 점 개선하고 표준편차를 12 점 감소시켜, 정책의 

안정성과 꼬리 위험 관리 효과를 입증하였다. 특히 규칙 

기반의 해석 가능한 구조를 통해 왜 특정 정책이 

선택되었는지 설명할 수 있어 실제 공정 적용 시 

운전자의 신뢰를 확보한다. 향후 연구에서는 CVaR 을 

직접 최적화하는 risk-sensitive 강화학습 또는 분포형 

강화학습을 적용하여 학습 단계에서 꼬리 위험을 직접 

제어하는 방향으로 확장할 계획이다. 
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