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요 약

본 논문에서는 태양광 발전소의 지리적 속성과 공간 통계 기법을 통해 추정된 기상 변수를 통합적으로 활용하는 딥러닝 기반 태양광(PV) 발전량
예측프레임워크를 제안한다. 기존 예측 기법은 인근 기상 관측소 자료에 의존하여 발전소 위치별 공간적 기상 변동성과 지리적 특성을 충분히 반영하
지 못하는 한계가 있다. 이를 해결하기 위해, 관측 지점이 없는 발전소 위치의 기상 변수를 공간 통계 기법을 통해 추정하고, 계산 효율 향상을 위해
해당추정과정을월단위로분할하여병렬처리하였다. 추정된기상변수와지리적속성을입력특성으로구성하여딥러닝모델에적용한결과, 제안한
프레임워크는 기존 방법 대비 예측 정확도 측면에서 일관된 성능 향상을 보였다.

Ⅰ. 서 론

근래, 재생에너지 보급 확대 정책에 따라 한국전력거래소(KPX)는 태

양광발전량 예측오차기분을강화하고 예측제도를전면개편하고 있다.

이로 인해 평균 예측 오차율은 개선되었으나, 강화된 기준은 중소 태양광

발전사업자의 수익성 저하와 시장 경쟁력 약화로 이어질 수 있다는 지적

도 제기되고 있다. 이러한 환경에서 태양광 발전량을 보다 정밀하게 예측

할 수 있는 기술적 접근의 중요성이 더 커지고 있다[1].

태양광 발전은 일사량, 일조시간, 기온, 운량 등 다양한 기상 요인에 직접

적인영향을 받으며, 구름 이동과 풍속변화로인한시간적·공간적변동성

으로 인해 발전량 예측에 본질적인 불확실성이 존재한다. 출력 변동성을

완화하기위한 에너지저장장치(ESS)의 활용이 가능하나, 비용 증가로 인

한 근본적인 해결책으로는 한계가 있다. 따라서 ESS 의존도를 낮추기 위

해서는 발전량 예측 기술의 고도화가 필수적이다[2,3].

기존 태양광 발전량 예측 연구는 물리적 모델, 통계적 기법, 머신러닝

및딥러닝기반접근으로발전해왔으며, 최근에는기상예보 정보와 인공

지능을결합한데이터기반 예측 기법이 활발히 연구되고 있다[4]. 그러나

대부분의 선행 연구들은 발전소 위치에서 직접 관측한 기상 자료의 부족

으로 인해 AWS 또는 ASOS와 같은 인근 기상관측소데이터를대푯값으

로 활용함으로써, 발전소 위치별 공간적 기상 변동성을 충분히 반영하지

못하는 한계를 가진다[5,6].

이러한 문제를 보완하기 위해 공간 보간 기법을 활용하여 미관측 지

점의 기상 변수를 추정하는 연구가 수행되어 왔다. 특히 크리깅(Kriging)

이나 IDW 기반 보간 기법을 활용한 발전량 예측 연구에서 일정 수준의

정확도 향상이 보고되었으나, 단일 기간 분석이나 시계열적 상관성 미반

영의 한계가 존재한다.[7]

본 논문에서는 이러한 한계를 극복하기 위해 태양광 발전소 인근 기

상관측자료를활용하여병렬처리기반크리깅기법을적용하고, 발전소

위치에서의 기상 변수를 효율적으로 추정한다. 추정된 기상 변수는 딥러

닝기반예측모델(DNN, RNN, LSTM, GRU)의 입력으로활용되며, 공간

보간 기법적용 여부에따른 태양광발전량 예측성능을 비교·분석함으로

써 제안 기법의 유효성을 검증한다.

Ⅱ. 본론

1. 병렬 크리깅 기반 기상 변수 추정 프레임워크 구현

본 연구에서는 2013년부터 2015년까지의 기상청 관측소 400개 지점에

서수집된시간별기상예보자료와전라도 A 지역에위치한태양광발전

소의 시간별 발전량데이터를 활용하여데이터베이스를 구축하였다. 구축

된 데이터베이스는 태양광 발전 출력 예측 모델의 학습 및 검증을 위한

입력 데이터로 사용되었다. 발전소 위치에서 직접 관측이 어려운 기상 요

소를 추정하기 위해 공간 통계 기반 크리깅 기법을 적용하였으며, 대규모

시계열데이터 처리에따른계산부담을 완화하기 위해 크리깅연산을 월

단위로 분할하여병렬 처리하였다. 병렬 연산은 Python 환경에서병렬처

리를 지원하는 Joblib 라이브러리를 활용하여 구현되었으며, 시간 단위 크

리깅 연산을 독립적인 작업 단위로 구성하였다. 최종적으로 병렬 처리 기

반크리깅을통해추정된 기상 요소들은 태양광발전량 예측 모델의 입력

변수로활용되었다. 그림 1은 본 연구에서제안한 데이터처리 및병렬크

리깅 기반 기상 변수 추정 절차를 나타낸다.

그림 1. 데이터 처리 및 병렬 크리깅 기반 기상 변수 추정 절차



2. 추정된 특정 지점 기상 데이터 기반 태양광 발전량 예측

DNN(Deep Neural Network)은 입력층과 출력층 사이에 다수의 은닉

층(hidden Layer)들로 이루어진 인공신경망 구조로, 각 계층은 뉴런

(nueron) 또는 노드(node)로 이루어져 있으며, 가중치와 활성화 함수

(activation function)를 통해 상호 연결된다. 이러한 구조는 이미지 인식,

음성 인식, 자연어 처리 등 다양한 분야에서 활용되어 왔으며, 기존 단순

통계적 회귀 모델에 비해 비선형적 관계와 복잡한 데이터 패턴을 효과적

으로 학습할 수 있어, 예측 정확도 측면에서 우수한 성능을 보인다[8].

RNN(Recurrent Neural Network)은 DNN 구조를 순환적으로 연결한

형태로, 이전 시점의 정보를 현재 학습에 반영할 수 있는 딥러닝 기반 시

계열 모델이다. 일반적으로 tanh 또는 ReLU 활성화 함수를 사용하며, 시

계열 길이가 증가할 경우 기울기 소실로 인해 장기 의존성(long-term

dependency)를 효과적으로 학습하지 못하는 한계가 존재한다.

LSTM(Long Short-Term Memory)은 이러한 RNN의 한계를 개선하

기 위해 제안된 구조로, 셀 상태(cell state)와 게이트 메커니즘을 통해 장

기정보를안정적으로유지할수있다. 이를 통해장기시계열데이터에서

도 효과적인 학습이 가능하다[9].

그림 2, 그림 3 및 그림 4는 크리깅 기법을 통해 추정된 기상 데이터를

입력으로적용한 DNN, RNN 및 LSTM 기반태양광 발전량 예측 결과를

나타내며, 인접한 기상 관측소의 실측 데이터를 입력으로 사용한 기존 예

측 모델과의 성능을 비교·분석한 결과를 보여준다.

그림 3. DNN 기반 태양광 발전량 예측 결과 비교

그림 4. RNN 기반 태양광 발전량 예측 결과 비교

그림 5. LSTM 기반 태양광 발전량 예측 결과 비교

Ⅲ. 결론

본 논문에서는 3년간의 기상 데이터를 효율적으로 처리하기 위해 병렬

크리깅기법을 적용하였으나, 공간적 상관성만을 고려하고 시간적 상관성

은 반영하지 못한 한계가 존재한다. 이로 인해 계절성 및 시간 의존성과

같은 시계열 특성이 충분히 반영되지 못하였다. 또한 단일 태양광 발전소

를 대상으로 분석이 수행되어, 제안한 기법의 공간적 확장성과 다수 발전

소의 환경에서의 일반화 성능에 대한 검증이 제한적이었다. 향후 연구에

서는복수발전소를대상으로한공간확장성평가와함께, 시공간 크리깅

기법 또는복합 예측 모델과의 결합을 통해 시간적·공간적상관성을 동시

에반영[10-11]하고자한다. 아울러태양광시스템의특성및환경 변수를

고려함으로써 예측 모델의 일반화 성능을 더욱 향상시킬 것으로 기대된

다.
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