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Abstract—Zero-knowledge (ZK) verification of large language
model (LLM) inference is bottlenecked by the sizes of lookup
tables for non-linear operations. Current systems use tables with
2'% or more entries regardless of model precision. We observe
that pre-quantized INT4 models constrain weights to 16 discrete
values, a structure that existing ZK systems do not support.
We present quantization-native ZK circuits with 16-entry weight
lookups and 256-entry activation lookups implemented in Halo2.
On a transformer feed-forward network (FFN) layer, we achieve
1,024 x lookup reduction for weights and 64x for activations.
We generate Halo2 Kate-Zaverucha-Goldberg (KZG) proofs with
3.44s of proving time, 26ms of verification, and 1.95KB of proof
size.

Index Terms—Halo2, KZG commitments, lookup tables, ma-
chine learning, transformer networks, zero-knowledge proofs.

I. INTRODUCTION

Large language models have transformed numerous artificial
intelligence (AI) applications, yet concerns surrounding their
legitimacy and trustworthiness pose significant challenges [1].
Zero-knowledge proofs offer a promising approach where
a prover can demonstrate correct model execution without
revealing private weights or inputs [2]. Recent work has
explored blockchain-based verification of machine learning
(ML) inference to provide tamper-evident audit trails [3].
Current ZK-ML systems face a critical bottleneck in lookup
tables for non-linear operations [4]. Systems such as EZKL
and zkLLM use lookup tables with 2'4 or more entries to
handle activations and range checks [2], consuming significant
memory and constraining scalability [5].

Zero-knowledge succinct non-interactive arguments of
knowledge (zk-SNARKS) enable a prover to demonstrate
knowledge of a witness satisfying a circuit without revealing
the witness [4], with Halo2 providing PLONKish arithmeti-
zation and lookup arguments for efficient non-linear opera-
tions [6]. INT4 quantization reduces weights to 4-bit integers
in {-8, ..., +7}, with methods such as GPTQ [7] and AWQ [8]
achieving near-lossless compression at 4x size reduction. Sun
et al. demonstrated 13B parameter verification using tlookup
for non-arithmetic operations [2], while the ZKML system
[4]focuses on compiler optimizations; however, both use
general-purpose lookup tables without quantization awareness.

EZKL provides ONNX-to-Halo2 compilation but performs
internal quantization without exploiting pre-quantized model
structure [9]. Table I summarizes reported performance from
prior ZKML systems on their respective benchmark models.
These results are not directly comparable due to differing
model architectures and scales.

TABLE I
COMPARISON WITH EXISTING ZKML SYSTEMS

System Model Prove  Verify Proof

zkLLM [2] Llama-2-13B 803 s 3.95s 200 KB
ZKML [4] ResNet-18 529s 12ms 153 KB
EZKL [5] CNN-Strided  69.8 s - 479 KB
Ours (INT4) FFN layer 3.44s  26ms 1.95KB

A key insight is observed that pre-quantized models
have constrained value distributions. Models quantized with
GPTQ [7] or AWQ [8] use INT4 weights with only 16
possible values. Current ZK systems ignore this structure,
applying precision-agnostic verification to already-quantized
models. Our contribution is quantization-native ZK circuits
that exploit INT4/INTS structure, addressing the gap between
pre-quantized model distributions and precision-agnostic veri-
fication. We achieve 16-entry lookup tables for INT4 weights
(1,024x reduction), 256-entry lookup tables for INT8 activa-
tions (64x reduction), and end-to-end verification of trans-
former FFN layers. Feed-Forward (FFN)layers.

II. METHODOLOGY

Fig. 1 illustrates our quantization-native verification
pipeline. A pre-quantized INT4 model feeds into our Halo2-
based circuit, which uses specialized lookup tables matched
to the quantization precision.

A. Quantization-Native Circuit Design

Pre-quantized models have a known, fixed-value distribu-
tion, where INT4 weights take values in {—8,—7,...,7},
representing exactly 16 possibilities. We design our ZK circuit
to exploit this structure through two specialized lookup tables.
The INT4 weight lookup consists of a fixed table of 16 entries
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Fig. 1. Proposed Quantization-Native ZK Verification Pipeline. The architec-
ture utilizes specialized Halo2 lookup tables matched to the model’s numerical
precision. By employing a 16-entry table for INT4 weights and a 256-entry
table for INTS8 activations, the system achieves significant reductions in circuit
complexity and memory footprint compared to precision-agnostic approaches.

that map indices O through 15 to field elements representing
—8& through +7. Each weight multiplication first verifies that
the weight exists in this table via a lookup argument. The INT8
activation lookup uses a 256-entry table storing input-output
pairs for all possible INTS8 inputs to the rectified linear unit
(ReLU) function. The two-column lookup verifies both input
and output simultaneously.

B. FFN Layer Circuit

Our circuit implements a standard transformer FFN layer:
a linear projection with INT4 weight verification, a ReLU
activation via a 256-entry lookup, and an output projection
with INT4 verification. For dimensions d;,, — dj, — dou:, the
circuit performs (dp X dip, + doyt X dp) INT4 lookups and dj,
ReLU lookups.

III. RESULTS AND DISCUSSION

We evaluate on a scaled-down FFN layer (8—16—8) using
Halo2 with BN256 curves and KZG commitments (k = 12).
For fair comparison, we run EZKL on the identical model with
three precision configurations. Table II presents results on the
same FFN architecture.

TABLE 11
COMPARISON WITH EZKL BASELINES

Configuration Lookup Prove Verify Proof

EZKL (bits=7) 128 0.90 s 14.8 ms 19.22 KB
EZKL (bits=10) 1,024 1.98 s 22.7 ms 19.29 KB
EZKL (bits=14) 16,384  20.19s 161.6 ms 19.22 KB
Ours (INT4) 16 344 s 26 ms 1.95 KB

Our quantization-native approach achieves 9.9x smaller
proof size (1.95 KB versus 19.22 KB), which directly reduces
on-chain verification costs. The lookup table is 8§x smaller
than EZKL’s minimum configuration (16 versus 128 entries).
While EZKL bits=7 achieves faster proving (0.90 s), it can-
not exploit true INT4 structure; our 16-entry table precisely
matches quantized weight distributions. Notably, EZKL prove
time scales sharply with lookup size (22x slowdown from

bits=7 to bits=14), whereas our approach maintains constant
16-entry tables regardless of model scale. For bandwidth-
constrained deployments such as blockchain verification, the
10x proof size reduction offers substantial practical benefits.

IV. CONCLUSION

We demonstrated that quantization-native ZK circuits
achieve dramatic efficiency improvements by exploiting pre-
quantized model structure. Our 16-entry INT4 weight lookups
and 256-entry activation lookups reduce table sizes by 64
to 1,024 x compared to precision-agnostic approaches. Future
work includes layer-streaming protocols for full model veri-
fication, on-chain verification via Ethereum smart contracts,
and extension to attention mechanisms with INT4 key-value
caches.
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