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요 약

본 논문에서는 레이더 기반 심박수 측정 시스템에서 센서 파라미터와 AI 모델 하이퍼파라미터를 동시에 최적화하여 성능을
향상시키는 프레임워크를제안한다. 60GHz FMCW 레이더로 가슴 표면의 심박 신호를수집하고, 전처리를 통해 5차원 특징
시계열 데이터를 생성한다. 전처리된 시계열 데이터는 LSTM 기반 회귀 모델에 입력된다. 센서 파라미터와 AI 모델 하이퍼
파라미터를 베이지안 최적화를 통해 탐색하여 평균 절대오차(MAE)가 최소인 조합을 선택한다. ECG 기반 심박 측정값을
기준으로 휴식 상태의 성인 3명을 대상으로 본 시스템의 성능을 평가하였다. 그 결과, 최적화 이후 MAE가 피험자별로 4.74
에서 1.86, 9.46에서 2.70, 8.77에서 2.31로 감소하였다.

Ⅰ. 서 론

최근 머신러닝 기술이 적용된 레이더 센서 시스템을 개발하려는 연구가

증가하고있다[1], [2]. 그중에서도복잡한레이더 센서의신호를머신러닝

모델이이해하여 사람의심박을예측하는시스템은 신체에직접부착하지

않아도 심박수를측정할 수 있다는 장점이 있어 활발히연구되고 있다[3],

[4]. 다만 머신러닝 모델의 성능은 입력되는 레이더 센서의 특성에 크게

의존한다.

따라서 머신러닝 기반 레이더 센서 시스템에서 센서 파라미터를 적절히

선택하는 것은 모델의 성능에 영향을 주는 주요한 요소이므로 심박 측정

에서도적절한파라미터선정이중요하다. 예를 들어, 레이더 센서의 대역

폭을 늘리면 거리 해상도가 높아져 가슴 표면의 미세한 떨림까지 감지할

수있지만, 거리 해상도가높아진만큼 레이더 센서의 탐지 영역이 좁아져

심박이영향을 주는가슴표면부위를 충분히감지하지못할우려가 있다.

이러한상충 관계로인해경험적으로센서 파라미터의최적값을설정하는

것은 어렵다[5]. 또한 센서 파라미터의변화로레이더센서의특성이달라

지므로, 모델 학습을 좌우하는 AI 모델 하이퍼파라미터 또한조정될 필요

가 있다.

본 논문에서는 센서 파라미터와 AI 모델 하이퍼파라미터를 동시에 최적

화하는 프레임워크를 구축하고, 이를 적용하여 개발한 레이더 기반 심박

측정시스템을소개한다. 또한 실험을통해최적화이전머신러닝기반레

이더 센서 시스템에 본 연구에서 제안하는 프레임워크의 동시 최적화를

적용하면 성능을 개선할 수 있음을 입증한다.

Ⅱ. 본론

2.1 시스템 개요

본논문에서는 파라미터최적화를통한레이더 기반심박수측정 시스템

의 성능 향상을 위한 프레임워크를 제안한다. 그림 1은 본 연구에서 파라

미터 최적화를 적용하는 레이더 기반 심박 측정 시스템의 구조도이다. 본

시스템에서의 심박 측정은 레이더 센서에서 가슴 표면의 심박 신호를 감

지하고감지된신호를 시계열데이터로구성하여머신러닝 모델에입력하

여 이루어진다. 이후, 파라미터 최적화 모듈에서는 이를 통해 얻은 심박

예측 오차를 최소화할 수 있도록 센서 파라미터와 AI 모델 하이퍼파라미

터의 조합을 최적화한다.

2.2 레이더 센서 데이터 수집

본 시스템은 레이더 센서에서 수집한 신호 중 사전에 설정한 거리에 해

당하는 거리 구간의 신호를 선택한다. 이렇게 수집된 데이터는 머신러닝

모델에 입력되기 전에 전처리되어 모델 학습에 사용된다.

2.3 LSTM 모델 기반 심박 측정

심박은 호흡 대비 변위가 작아 위상 변화가 상대적으로 미약하다. 하지

만심박의주기가호흡에비해짧으므로, 심박을강조하기위해위상속도

를 주요 특징으로 사용한다. 레이더 센서에서 전처리를 통해 다음과 같이

5개의 특징을 추출한다. 추출 특징은 시간에 따른 위상 속도, 위상 속도에

밴드 패스 필터를 적용하여 얻은 호흡 대역과 심박 대역의 진폭, 그리고

호흡대역과심박대역의 FFT 피크주파수로구성된다. 각프레임은이러

그림 1. 시스템 구조도



한 5차원 특징 벡터로 정의되며, 프레임을 일정 길이로 누적한 시계열 데

이터가 머신러닝 모델에 입력된다.

머신러닝 모델은 시계열 데이터를 처리하기 위하여 LSTM 모델로 구성

되어 있다. LSTM 출력은 완전연결층에 입력되어 심박수를 회귀한다.

2.4 파라미터 최적화 모듈

머신러닝모델의성능은입력되는레이더센서의특성에크게의존하므

로, 센서 파라미터를적절히선택하는 것은중요하다. 본 논문에서 최적화

하는 레이더 센서 파라미터는대역폭과처프주기이다. 대역폭의 경우, 대

역폭을 늘리면 거리 해상도가 높아져 가슴 표면의 미세한 떨림까지 감지

할 수 있다. 하지만, 거리 해상도가 높아진 만큼 레이더 센서의 탐지 영역

이 좁아져 심박이 영향을 주는 가슴 표면 부위를 충분히 감지하지 못할

우려가 있다. 또한 처프 주기의 경우, 처프 주기가 짧아지면 신호를 더자

주 얻어 프레임 내 평균을 통한 위상 속도 추정 안정도가 향상된다. 하지

만, 계산량의 증가와 처프 내 ADC 샘플링 구간이 감소할 수 있어 위상

속도추정이잡음에민감해질수있다. 이러한센서파라미터는상충관계

를 가지고 있어, 체계적인 탐색을 통해 최적 값을 도출할 필요가 있다. 또

한 센서 파라미터의 변화로 레이더 센서의 특성이 달라지므로, 모델 학습

을 좌우하는 AI 모델 하이퍼파라미터 또한 조정될 필요가 있다.

최적화 대상파라미터 중 센서 파라미터 집합()은 대역폭과 처프 주기
로구성되어있으며, AI 모델 하이퍼파라미터집합()은배치크기, 학습
률, 은닉 크기, 드롭아웃 등으로 구성되어 있다. 최적화 모듈에서 탐색한

후보 중모델의평균절대오차(MAE)가 최소인최적조합을선택한다. 탐

색 효율을 높이기 위해 베이지안 최적화 알고리즘을 적용하였다.

2.5 실험 환경 및 결과

실험에서는 60GHz 대역 FMCW 레이더를사용하였다. 레이더는 피험자

의 가슴 표면 중심으로부터 약 0.6m 떨어진 위치에 설치하였고, 레이더

빔이 가슴 표면에 수직으로 입사하도록 정렬하였다.

센서 파라미터 집합()은 대역폭 2종(500MHz, 1,000MHz)과 처프 주기
2종(100μs, 150μs)으로 구성되며, 총 4개 조합을 평가하였다. 최적화 모듈

이 결정한 최적 센서 파라미터는 대역폭 1,000MHz와 처프 주기 150μs이

다.

AI 모델 하이퍼파라미터는 배치 크기 2부터 8까지, 학습률은 1e-6부터

1e-4까지, 드롭아웃은 0.1부터 0.3까지 탐색하였다. 모델은 배치 크기 4,

학습률 5.86e-5, 드롭아웃 0.219로 학습하였고, 검증 성능이 가장 좋은 에

포크에서 저장된 가중치를 최종 모델로 사용하였다.

실험은 휴식 상태에서 심박수가 60∼80 BPM인 성인 남성 2명과 성인

여성 1명을 대상으로 수행하였다. 학습 데이터는 센서 파라미터 조합 4종

각각에 대해 피험자당 820개씩 수집하였다. 조합별 학습 데이터 수는

2,460개이며, 모든 조합을 합산한 전체 데이터 수는 9,840개이다. 성능 평

가는 피험자당약 125초동안연속측정한 데이터를 100개 구간으로나누

어수행하였다. 각구간에서 ECG 심박간격의중앙값을 BPM으로환산한

기준값과 모델의 회귀 BPM 간 절대오차를 계산하고, 100개 구간의 절대

오차평균을MAE로산출하였다. 실험 결과는표 1과 같이 제안한 최적화

를 적용하였을 때 모든 피험자에 대하여 심박 측정 성능이 개선되었다.

Ⅲ. 결론

본 논문에서는 센서 파라미터와 AI 모델 하이퍼파라미터를 동시에 최적

화하는 프레임워크를 구축하고, 이를 레이더 기반 심박 측정 시스템에 적

용하였다. 제안 프레임워크를 적용한 결과, 최적화를 통해 모든 피험자에

대하여 심박 측정 성능이 개선되었음을 확인하였다.

본 시스템은 운용 환경에 맞게 센서 파라미터를 최적화할 수 있어, 다른

파라미터에대해서도 동일하게 최적 조합을 도출할 수있다. 또한, 레이더

외센서와의결합도 동시 최적화를 통해 다양한센서 결합 환경에서 최적

의 파라미터 조합을 탐색할 수 있을 것으로 기대한다.
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피험자
최적화 이전

(MAE)

최적화 이후

(MAE)
성인 남성1 4.74 1.86
성인 남성2 9.46 2.70
성인 여성1 8.77 2.31

최종 센서 파라미터 대역폭 1,000MHz, 처프 주기 150μs
최종 하이퍼파라미터 배치 4, 학습률 5.86e-5, 드롭아웃 0.219

표 1. 최적화 적용 전후 MAE 성능 비교

그림 2. 최적화 모듈 구조도


