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요 약

본 논문은물리기반의쿠프만 연산자를이용하여스위치드릴럭턴스 전동기의비선형전류방정식을 선형시스템으로모델링
하는 방법을 제안한다. 스위치드 릴럭턴스 전동기의 인덕턴스는 로터 위치와 상전류에 의해 바뀌는 구조로 높은 비선형성을
지니므로 선형 시스템으로 쉽게 모델링 되기 어렵다. 따라서 스위치드릴럭턴스 전동기의동적모델을 선형시스템으로표현하
기 위해 물리 기반의 쿠프만 연산자와 스위치드 릴럭턴스 전동기의 상전류 데이터를 기반으로 스위치드 릴럭턴스 전동기를
선형 시스템으로 모델링하는 방안을 제안한다.

Ⅰ. 서 론

스위치드 릴럭턴스 전동기(Swithced reluctance motor, SRM)은 낮은

가격과 시스템의 견고성, 영구 자석을 쓰지 않는다는 장점으로 인해 최근

많은 관심을 받고 있으며, 관련 연구들이 활발히 이루어지고 있다 [1]. 하

지만 SRM은 로터 위치와 상전류에 의해 바뀌는 인덕턴스의 비선형성이

매우 크므로 SRM의 제어 및 상태추정 등을 위해 주로 비선형 제어 이론

이많이사용되고있다 [2]. 하지만, 실제 산업계에 높은수준의 비선형 제

어이론을적용하는것은현실적으로쉬운일이아니며, 이를 해결하기위

해 SRM의 비선형 동적 모델을 선형화하는 방법들이 제안되고 있다 [3].

하지만 기존 연구들은주로국소적동작점에서의 선형화하는방법을사용

하거나, 시스템의 파라메터를 정확히 안다는 가정하에 피드백 선형화를

수행하므로, 시스템 모델 파라메터 변화 시 혹은 큰 선형화 오차로 인해

실제 활용이 어렵다는 한계가 있다.

한편, 비선형시스템을 효과적으로 선형화 하는 방법 중 최근 쿠프만 연

산자기반의 방법이 제안된 바 있다. 쿠프만 연산자는 비선형 동적 시스템

의 상태에대해관측가능한 함수를무한차원에서선형시스템으로 표현

가능하도록하는연산자이다 [4]. 하지만, 실제로무한차원의쿠프만연산

자를 얻는 과정이 복잡하고 어려우므로 유한 차원의 관측 함수를 도입하

여 데이터 기반의 방법을 통해 쿠프만 연산자를 근사하는 연구들이 제안

되었다. [5]. 하지만 하지만, 관측 함수를 어떻게 설계하느냐에 따라 쿠프

만 연산자의 성능에 차이가 발생하므로 관측 함수를 설계하는방법에 관

한 연구도 활발히 이루어지고 있다 [6].

따라서 본 연구는 3상 SRM을 데이터 기반의 선형 시스템으로 모델링

하기위해쿠프만연산자기반의 3상 SRM 전류동역학모델링방법을제

안한다. SRM의 특정 한 상에 대한 전류 데이터를 사용하여, 해당 상의

전류 동역학을 모델링 한 후, 다른 2상은 위상차를 이용하여 모델링한다.

시뮬레이션 결과를 통해 3상 SRM에 대한 선형 시스템 모델링이 가능하

다는 것을 입증한다.

Ⅱ. 본론

Ⅱ-1 쿠프만 연산자 이론

입력이 존재하는 비선형 동역학을 다음과 같이 정의한다.      (1)

 ∊ R  ,  ∊ R  , ⋅는 각각 시스템의 입력, 상태, 그리고
동역학을 나타낸다. 여기서 새로운 상태     라고 정의하
면, 확장된 상태의 공간에서 (1)은 다음과 같이 근사할 수 있다.

    (2)

여기서 는 유한 차원에서의 쿠프만 선형 연산자이고,⋅  R ×R →R  는 관측 함수이다.

Ⅱ-2 물리 기반의 쿠프만 연산자

SRM의 A 상의 이산 시간에 대한 전류 동역학은 다음과 같다.

   
  


 
  

  
 (3)

여기서           들은 각각 A 상전압, 저항,
로터 속도, 로터 각도, 그리고 A 상 인덕턴스이다.

    ×로게이트신호에의해 A 상에인가되는전압을결정

하며 상태     , 입력       로 정의하고, 비선
형 항들을 리프팅 하면 다음과 같다.        (4)



식 (4)를 이용하여 (3)을 정리하면

            (5)

  은 하이퍼 파라미터로 네트워크의 학습 대상이다. 쿠프만

연산자에 의해 리프팅 된 상태      라 정의하면 리프
팅 된 상태는 다음과 같이 정리될 수 있다.

        (6)

  R ×   R  × 는리프팅된상태및입력의하이퍼파라미터
행렬이고, 원래 상태는 정확도를 잃지 않고 다음과 같이 재구성할 수 있다.

   (7)

      투영 행렬로, 로부터원래상태를얻을수있다. 하지만

위 알고리즘은 A 상에 대해서만 모델링하기 때문에 3상 SRM에서 남은

B와 C 상에 대한 모델링 하지 못한다. 그래서 다른 2상에 대해 모델링을

하기위해 SRM의 특징을살펴보면 3상의전류와 게이트 신호의 파형들이

비슷한 형태를 띠고 3상 사이엔 특정 값의위상차가 존재하므로 3상을모

두 선형 시스템으로 모델링 할 수 있다.

Ⅱ-3 시뮬레이션 결과

Parameter Value
lr 1e-4
Optimizer Adam
Epoch 2000 0.9948 0.0224 0.0376

<표 1> 하이퍼 파라미터

네트워크 ⋅는 Multi Layer Perceptron (MLP)로 구성되어 있고,

은닉층 수는 9개, 활성화 함수로는 Tanh를 사용했다. batch size는 4096,

loss는 Mean Square Error (MSE)를 사용했다. 다른 하이퍼 파라미터들

은표 1에 표시되어있다. 총시뮬레이션 시간은 0.2초이다. 그림 1부터 그

림 3은 실제 SRM의 전류궤적과제안한모델의전류궤적을비교한그림

이다. 표 2를 살펴보면, 실제 전류와 제안한 모델의 전류 사이의 오차가

크지 않다는 것을 확인할 수 있다.

MSE MAE
A상 0.0325 0.1465
B상 0.0517 0.1725
C상 0.0958 0.2239

<표 2> 실제 전류와 제안한 모델의 전류 오차 MSE 및 MAE

Ⅲ. 결론

본 연구에서 물리기반 쿠프만 연산자를 활용하여 3상 SRM을 선형 시

스템으로모델링하는방법을제안했다. 제안된 방법은 A상의 데이터를 기

반으로 A상의 전류동역학 모델을 구현하고, 상 간 위상차를 이용하여 전

체 3상 시스템을 모델링하였다. 시뮬레이션 결과를 통해 비선형시스템인

3상 SRM을 선형 시스템으로도 표현이 가능하다는 것을 입증하였다. 앞

으로 3상 SRM의 전기적 부분 뿐 아니라 기계동역학을 포함한 선형 시스

템 모델링 연구를 진행할 예정이다.

<그림 1> 실제 A상 전류 궤적과 제안한 모델의 A상 전류 궤적의 비교

<그림 2> 실제 B상 전류 궤적과 제안한 모델의 B상 전류 궤적의 비교

<그림 3> 실제 C상 전류 궤적과 제안한 모델의 C상 전류 궤적의 비교
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