
전파 특성에 기반한 제로샷 학습을 위한 신경망 차원 적응 기법

서연주, 조혜진, 김정환, 이웅희

동국대학교

seo_yeonju@dgu.ac.kr, 2022111851@dgu.ac.kr, kjwh98@dgu.ac.kr, woongheelee@dongguk.edu

Wave Propagation-Inspired Neural Network Dimension Adaptation Techniques:
A Zero-Shot Learning Perspective

　Yeon-Ju Seo, Hye-Jin Cho, Jung-Hwan Kim, Woong-Hee Lee

Dongguk Univ.

요 약

본 논문은 학습 데이터 셋 구축의 한계 및 기존 학습 데이터와 차원이 다른 데이터가 입력됨에따른 학습 비용 증가에주목하여 제로 샷 러닝기반의
새로운 신경망 적응 기법을 제안한다. 사전 학습된 신경망을 추가 학습 없이 더 높은 차원에서도 쓸 수 있게 geometric sequence decomposition와
sinc 함수 기반 보간 두 가지 기법을 이용해 파라미터(가중치/바이어스)를 확장하는 방식으로 신경망의 입력 차원을 확장한다. 복원과 잡음 제거, 두
모델을 통한 시뮬레이션으로 제안 기법을 통해 확장한 신경망과 재학습을 수행한 신경망을 비교하여 신경망의 입력 차원을 확장할 때 추가적인 학습
없이도 안정적인 성능을 보임을 확인한다. 이로써 사전 학습된 신경망의 재사용 측면에서의 본 논문이 제안하는 기법이 가지는 강점이 기대된다.

Ⅰ. 서 론

인공지능 분야에서, zero-shot learning (ZSL)이란 한 번도 본 적 없는

데이터를 분류 가능하도록 학습하는 것이다. 이러한 학습 방법은 학습에

사용되는데이터가없어도 유용한패턴이나결과를도출하기때문에학습

데이터가제한적이거나레이블확보가어려운환경에서특히유용하다 [1].

반면 few-shot 혹은 many-shot learning 등은 제공되는 학습 데이터의

양에 따라 구분되며, 일반적으로 데이터가 많을수록 성능이 향상된다. 그

러나대규모데이터수집및라벨링은높은시간·비용을요구하고, 개인정보

보호 및 보안 등의 이유로 데이터 접근 자체가 제한되는 상황도 빈번하게

발생한다 [2].

또한 학습시킨 신경망을 실제 환경에 적용할 때, 데이터 수집 방식이나

환경적인 제약 조건이 달라짐에따라 기존 학습 데이터의 차원과 다른새

로운 데이터가 들어오는 경우도 발생할 수 있다. 일반적인 신경망은 입력

차원이 고정되어 있어, 신경망으로 들어오는 데이터의 차원이 변하면 이

에맞추기위해재학습과정을거쳐야한다. 즉 기존에학습시킨신경망을

재사용하지못하고새롭게신경망을구성해야한다. 이처럼기존신경망의

입력차원과다른데이터가들어오는경우, 그 과정에서또다시학습데이

터 확보와 같은 학습 비용이 요구된다는 근본적 문제가 존재한다.

방대한 양의 학습 데이터 확보의 어려움, 데이터 차원 변화에 따른 학습

비용증가라는두가지문제는추가학습과정없이도기존에학습된신경

망을 재사용하여입력 차원 변화에 대응할 수있는새로운 기법의필요성

을 부각시킨다. 따라서 본 논문에서는 사전 학습된 기존 신경망의 파라미

터를 재구성하여, 추가 학습 없이 해당 차원에 맞게 변환함으로써 새로운

입력차원을처리할수있는파라미터확장기법을제안한다. 본 논문에서

가장 핵심이 되는, 파라미터를 재구성하는 확장 기법은 geometric

sequence decomposition (GSD) [3]과 sinc 함수 기반 보간, 두 가지 방법

을 적용하여 파라미터를 확장한다.

Ⅱ. 본론

가. 등비수열 분해 기반 보간 기법

GSD를기반으로길이 인인코더/디코더가중치벡터를길이 로확장
한다. 길이 의가중치벡터 w∈ℂ를 개의geometric sequence의합으로
모델링한다.

w       ∀   (1)

[3]에 따라 개의 중첩된 관측 시퀀스의 초항    과 공비   를

추정하기위해서는 개의값이필요하다. 이에 본 논문에서는 길이 인
가중치 벡터w가 ≥을 만족하도록 으로 설정하였으며, 이에
기반하여 초항과 공비를 추정하는 과정을 수행한다.

먼저 개의 중첩된 관측 시퀀스로부터 개의 연속 꼭짓점v   v을 다음과 같이 구성한다.
v   w  w ∀  (2)

이 개의 꼭짓점들 중에서 개를 lexicographical 조합으로 뽑아
길이 인 –simplexes의 집합ℵ을 만든다. 그리고 simplex의 부
피 ℵ를계산하여이를계수로갖는 차다항식을만들면, 해당 다
항식의 근이 공비 r이 된다.

   ℵ    (3)

r을기반으로만든행렬 R∈ℂ×을다음과같이구성하고, a R w를
풀어 초항 a를 추정한다.

R   r   ∀∈… (4)

추정된 r과 a를이용해 길이의확장가중치벡터 wGSD를생성해야한
다. 식 (1)에서원래길이 에서의한번증가하는단위를 ′  으로
확장 인자 에 맞게 변환한다. 그리고 0부터 -1까지 인덱스를 확장하여w를 재구성한다.



wGSD      ′   ∀    (5)

식 (5)와같이확장후, 기존의 w와에너지가동일하도록정규화과정을거쳐
에너지를 보존한다. 최종적으로 ℜwGSD을 수행하여 가중치 벡터 확장을
마무리한다. w의확장은신경망노드의수만큼진행하고바이어스는 w확장
과 같은 기법으로 한 번만 수행한다.

나. sinc 함수 기반 보간 기법

가중치를확장하는두번째방법으로 sinc 함수기반보간기법을사용하여w를 좀 더 촘촘한 간격으로 확장된 값으로 바꾼다. 이를 위해 보간 행렬
S∈ℝ × 을 다음과 같이 구성한다.

S   sinc ∀∈ ∈ (6)

이는 길이 벡터를길이 로확장하는 역할을한다. 인코더가중치벡터
wen는 입력 방향으로 확장되어야 하므로 wensinc wenS로 확장하고, 디
코더 가중치 벡터 wde와 출력 바이어스 벡터 b de는 출력 차원 방향으로
확장되어야하므로각각 wdesinc  Swde , b desinc  Sb de으로계산한다. 마지
막으로, 확장된파라미터를입력차원이 인신경망의파라미터로구성한
다. 이로써 -차원 신경망에서학습된파라미터를 두가지방법으로확장
하여 추가 학습 없이 ZSL을 기반으로한 확장 신경망을 구성하였다.

다. 제안 기법의 프레임워크

표 1. 기본 시뮬레이션 설정.

명확한비교를위해본논문에서제안하는기법으로파라미터를 2배확장한

zero-shot 모델외에도, 파라미터를무작위로2배확장하여구성한랜덤 zero-

shot 모델을추가해성능의하한선을확인한다. 또한확장된입력차원에맞

도록신경망을재구성한뒤, 기존 신경망이학습한데이터대비 2배확장된

데이터로재학습시킨many-shot 모델을구성한다. 시뮬레이션으로many-

shot 모델이학습하는데이터수 train exp을변화시키며저차원(64)대비 2
배확장된환경에서의복원및잡음제거성능을mean squared error (MS

E)로평가한다. 이로써제안하는두 zero-shot 확장모델이추가학습을수행

한many-shot 모델대비어느학습데이터개수구간에서우수한지확인한다.

라.시뮬레이션 결과

그림1, 그림2에서 공통적으로, many-shot 모델은 train exp이 증가함에
따라MSE가감소하는추세를보인다. 반면, 제안하는GSD/sinc 기반 zero-s

hot 확장모델은추가적인학습과정이요구되지않아 train exp에상관없이
동일한MSE 값을가짐을확인할수있다. 또한랜덤모델은전구간에서가

장높은MSE를보였으며, 이는무작위적인차원확장이아닌 GSD/sinc와

같은 구조적 확장이 성능 확보에 핵심임을 뒷받침한다.

그림 1은 train exp변화에 따른 오토인코더복원 성능(MSE)을 비교한 결
과이다. GSD 기반 zero-shot 모델은 trainexp이100 이하인구간에서many
-shot 모델대비더낮은MSE를보여소량학습환경에서의우수성을확인하

였다. 반면 sinc 기반 zero-shot 모델은그림상단의가우시안신호모델에

서는 trainexp이 50일 때까지는경쟁력있는성능을보였으나, K-Sparse
벡터에서는전반적으로 many-shot 모델 대비열세를보여 sinc 기반 보간

방식의 한계를 확인하였다.

그림 1. 복원 성능 (상단: 가우시안 신호, 하단: K-sparse 벡터, sparsity=3).

그림 2. K-Sparse 벡터(sparsity=3)의 잡음 제거 성능.

그림 2는동일한설정에서 trainexp변화에따른디노이징오토인코더(DAE)
의잡음제거성능을비교한결과이다. K-Sparse벡터에signal-to-noise ratio

(SNR)은 0dB로가산백색가우시안잡음을추가하여노이즈신호를모델링하

였다. many-shot 모델은 확장된 차원의 데이터를 가지고 재학습을 수행

하였음에도 불구하고 전 구간에서 GSD기반 zero-shot 모델보다 높은

MSE를 나타내었다. 이렇게 다양한환경에서 GSD기반 zero-shot 모델이

잘 작동됨을 확인하였다.

Ⅲ. 결론

본논문에서는더높은샘플링레이트나데이터자체의길이가늘어나는등

신경망의입력차원이증가하는경우, 재학습없이파라미터를확장시켜사전

학습된기본신경망을재사용하는기법을제안하였다. 기본신경망의차원보

다작거나커진, 새로운차원의데이터가들어오더라도이때마다확장인자값을유동적으로변화시켜본논문에서제안하는기법으로파라미터를재구
성한다면, 새로운차원의데이터가들어올때마다해당차원에맞는학습과정

을 수행하지 않아도 되기 때문에 이를 통한 학습 비용감소가 예상된다.
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기본 신경망 입력 차원  64 신경망 width 32

확장 인자  2 신경망 depth 1

확장된 신경망 입력 차원  128 손실 함수 MSE

기본 신경망 학습 데이터 수  train 100 Optimizer Adam

테스트 수  test 5000 학습률 0.001


