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요 약
본 논문은 Near-field 환경에서 새로운 채널 재표현 방식을 이용하여 Non-Line-of-Sight(NLoS)을 식별하는 신경망 설계 기법을 제시한다. 제안한

신경망은 선형 분수 채널의 한켈 행렬을 이용한 학습을 바탕으로 NLoS을 식별하는 것으로 시뮬레이션 결과를 통해 기존 신경망 기반 기법들과 비교하
여 높은 정확도를 보임을 확인하였다.

Ⅰ. 서 론

초고속 데이터 전송, 저지연, 대규모 접속을 위한 6G 무선 시스템에는

Extremely Large-scale Multi-Input Multi-Output(XL-MIMO)가 핵심

기술로 사용된다 [1]. 기존 MIMO와 비교하면 초대형 안테나 배열로 인해

전자기장 특성이 Far-Field(FF)에서 Near-Field(NF)로 변하게 됨에 따

라, NF에서 구면파의 위상은 안테나 인덱스에 대한 비선형 함수로 나타

나기에 물리적 기하 구조로 정확히 도출하는 것이 중요하다. 또한 NF에

서는 채널 상태에 대한 정보가 위치 추정과 빔포커싱 모두에 영향을 주기

때문에 Line-of-Sight(LoS)와 Non-Line-of-Sight(NLoS)의 식별은 더

욱 중요하다 [2]. 이는 NLoS의 조건을 적절히 식별하지 못할 경우 거리와

각도 정보가 왜곡되어 잘못된 위치 추정 결과를 초래하기 때문이다.

NLoS 식별에서 신경망을 사용한 이전 연구는 채널의 물리적 응답 정보를

기반으로 시공간적 특성을 학습하는 구조 기반 방식들이나 채널 응답을

대체 특징 공간으로 변환하는 표현 학습 기반 방식들로 진행되었다 [3].

하지만 앞선 방식들은 FF 전파에 해당하는 선형 위상 응답을 가정하고 개

발된 방법으로, 비선형 위상 특성을 갖는 NF환경에서는 성능을 보장하기

힘들다. 따라서 본 논문은 새로운 채널 재표현 기법을 이용한 신경망을 사

용해 NF에서 NLoS를 식별하는 문제를 해결한다. K-factor와

Signal-to-Noise Ratio(SNR)이 무한대인 조건에서 한켈 행렬의 랭크가 1

이 된다는 특성을 사용해 채널을 재표현하여 신경망이 채널로부터 더 의

미 있는 정보를 학습하도록 이끈다. 최종적으로 한켈 행렬의 특이값은 매

우 구별이 잘되는 입력값으로 제공되어 효율적인 학습을 촉진하고 판별

능력을 향상시킬 수 있다.

Ⅱ. 시스템 모델

다음은 NF 환경의 Downlink 상황에서의 신호모델로 기지국은 개의

안테나를 사용하여 1개의 단말과 통신하는 상황으로 안테나 간격은

  로 가정한다. 이때의 수신 신호는 아래와 같이 표현된다.

x  Sh  n (1)

x 는  시간 슬롯 동안의 신호를, h는 사용자와 기지국 사이의 채널, S는

기지국이 전송한 신호, n 은 잡음을 나타낸다. 과  를 각각 인덱스 간

격과 파일럿 심볼 수라고 할 때,    을 만족하며 부분적으로 추정

된 채널 정보 he(즉, he    h∀∈⋯)를 얻을 수 있다.

또한, NF 채널 h는 아래와 같이 표현된다.

h  
  



  e
j  

a  (2)

은 경로의 수,  




은 Large-Scale Fading Component,

 ∼ 은 Small-Scale Fading Component, 과 은 기지국 첫

번째 안테나와 사용자 간의 거리 및 각도, 는 파장,

al   

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
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 

T 조향 벡터로 정의된다. 이

때 번째 안테나와 단말 사이의 거리 
은 테일러 2차 근사를 통해 다음

과 같이 정리된다.


   ∆

  ∆cos (3)

≈    ∆cos

∆sin 


 (4)

이때 LoS 채널은 이 1일때와 동일하다. 이러한 구면파 채널 모델은 비

선형 특성으로 인해 Discrete Fourier Transform(DFT)를 사용하는 공간

주파수 도메인에서는 채널을 효과적으로 구별할 수 없다. 따라서 본 연구

는 길이가  인 부분적으로 추정된 Channel State Information(CSI) he

를 통해 채널 종류를 식별하고자 채널 재표현인 선형 분수 채널과 한켈화

를 활용한다.

그림 1. 원본 NF LoS채널과 분수화한 채널의 위상 비교
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II-A. 선형 분수 채널과 한켈화

본 논문의 핵심 함수는 분수화 연산자  와 한켈화 연산자 로,  는 임

의의 시퀀스 a와 인덱스 간격 대해 다음과 같이 정의된다.

a   a st a  aa

∀∈  ⋯   (5)

이때 은 LoS 채널 h를 고려할 때 h의 분수화 채널인 h 의 위상이 근사

적으로 선형임을 알 수 있다. 이때 CSI 는 원 채널 h에서 등간격 샘플링된

결과이므로, he의 위상 또한 근사적으he로 선형이다. 그림 1을 보면 원본

채널의 위상은 NF의 비선형 특성에 따라 뚜렷한 곡률을 보이는 반면, 분

수화한 LoS채널은 근사적으로 선형적인 위상임을 확인할 수 있다. 따라

서 분수화를 통한 채널 재표현이 NLoS 채널의 구분을 쉽게 하여 기존의

FF기반 알고리즘의 적용을 가능하게 함을 알 수 있다.

다음으로 임의의 시퀀스 a에 대한 한켈화 연산자 는 아래와 같이 정의

된다.

A ga stA  ∀ ∈⋯ (6)

LoS 분수화 채널 he 에 대한 한켈 행렬 He  he 은 잡음이 없

는 이상적인 환경과 테일러 2차 근사 (4)의 가정하에, rankHe   인

특성을 가진다. 하지만 NLoS 채널의 경우 rank-1 특성을 만족하지 않기

에, 한켈 행렬의 특잇값을 활용한다면 두 채널의 분류를 더욱 쉽게 할 수

있을 것으로 기대할 수 있다.

II-B. 신경망 프레임워크

잡음과 (4)의 테일러 근사 오차로 인해 LoS 채널임에도 rank-1 특성을

완벽히 만족하지는 않으나 여전히 한켈 행렬의 특이값 벡터 는 채널의

핵심 정보를 보존하고 있으므로 신경망에 활용할 수 있다. 앞선 논의를 바

탕으로 분수화와 한켈화을 거친 를 입력으로, 원핫 인코딩 벡터를 출력

으로 하는 신경망 프레임워크를 설계한다. 이때 원핫 인코딩 벡터는 LoS

면 y   T , NLoS이면 y   T이다. 또한 본 논문의 목적은 데

이터 변환을 통한 신경망 학습의 효율성을 보이는 것이기에, 완전 연결 신

경망 모델인 바닐라 모델을 사용하고 최적화를 위해 적응형 모멘텀 추정

을 선택하였다. 최종적으로 테스트 과정에서는 를 입력으로 넣어 나온

결과 벡터 y를 통해 LoS/NLoS를 판단한다.

Ⅲ. 시뮬레이션 결과

제안한 방법의 성능을 기존의 신경망 기반 방법들(Baseline 1, 2, 3)과 비

교한다. 시뮬레이션 파라미터 설정을 위해 안테나 수    ,

  m, SNR  dB , ∼ U m, ∼ U rad 으

로 설정하였고 은 NLoS 조건에 대해 ⋯ 중에서 무작위로 선택

된다. 또한, 기본 파일럿 심볼 수    이고 분수화를 위한 인덱스 간격

은   이다.

그림 2는 SNR에 따른 식별 성능을 보여준다. 제안한 방법은 10dB부터

기존 모델에 비해 뚜렷한 성능 격차가 나타나는 것을 볼 수 있으며, SNR

이 25dB일때는 거의 100%의 성능을 가짐을 확인할 수 있다.

그림 3은 학습 데이터셋의 수에 따른 정확도를 보여준다. 주목할 점으로

는, 기존 접근법들은 경쟁력 있는 성능 달성을 위해 개 이상의 학습 데

이터셋을 필요로 하지만 제안한 방법은 적은 학습 데이터셋 만으로도 우

수한 성능을 유지한다는 것이다. 이는 제안한 방법이 NF 식별을 위해 매

우 효율적인 신경망 학습을 가능하게 함을 시사한다.

그림 2. SNR에 따른 정확도 비교

그림 3. 훈련 데이터셋 수에 따른 정확도 비교

Ⅳ.결론

본 논문에서는 NF 환경의 비선형 위상 특성으로 기존 접근법들이 실패

하는 문제를 해결하기 위한 채널 재표현 기법을 소개한다. 원시 채널 데이

터를 분수화 후 한켈 행렬의 분리가능한 특이값으로 변환하여 신경망이

채널로부터 더욱 유의미한 정보를 학습하도록 유도한다. 이는 신경망의

판별 능력을 향상시킬 뿐 아니라 6G 무선 시스템에서 더 정확한 위치추정

과 빔포커싱을 가능하게 한다. 시뮬레이션 결과는 제안한 방법이 기존 방

법들과 비교하여 높은 정확도로 NLoS를 식별함을 입증한다. 특히 적은

수의 훈련 데이터로 학습했을 때에도 우수한 성능을 보임으로써 제안한

방법의 실용성과 견고함을 확인할 수 있다.
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