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요 약  

 
본 논문은 셀룰러 기반 Unmanned aerial vehicle(UAV) 통신 네트워크에서 공간 보간 기법인 Kriging 을 이용한 스펙트럼 

점유 예측을 개선하고자 Kriging 프레임 워크를 Deep learning 과 결합한 형태인 Deep Kriging 구조를 제안하고 성능을 

개선하고자 하였다. 또한 기존 Ordinary Kriging(OK) 방식 및 Transformer 딥러닝 기법과 성능 비교를 통해 공간 보간 

기법인 Deep Kriging 모델의 우수성을 검증하였다. 

 

Ⅰ. 서 론  

 최근 통신 시스템의 발전에 따라 양질의 통신서비스 

제공은 필수적이다. 이에 따라 신호 세기 추적 연구들이 

지속되고 있으며, 공간 보간 기법인 Kriging 을 이용한 

신호 세기 예측 연구가 있다[1]. 또한 기존의 Kriging 

기법에 Deep learning 을 결합한 Deep Kriging 이 

제안되어 기존 Krigng 기법의 예측 성능을 더욱 

향상시키는 연구가 진행되었다[2]. 본 연구에서는 

셀룰러 기반의 UAV 통신 네트워크에서 스펙트럼 

모니터링을 위한 Deep Kriging 기반 3 차원 공간에서의 

스펙트럼 보간 기법을 제안한다. 

  

Ⅱ. 본론  

 

그림 1. Deep Kriging 구조 

 

본 연구에서는 Software-Defined-Radio(SDR)로 

구축한 LTE 기지국 타워로부터 전송된 SDR 수신기를 

탑재한 쿼드콥터형 UAV 를 이용하여 실측 데이터를 

수집하였다. 3.51GHz 주파수의 LTE DL I/Q 샘플을 

UAV 로부터 수집하였고 이를 데이터셋으로 활용하였다. 

또한, UAV 에 장착된 GPS 수신기의 로그를 이용하여 

수신신호의 세기와 위치 정보를 알 수 있다. 수신신호의 

경우 LTE 수신 알고리즘을 이용하여 Reference Signal 

Received Power(RSRP) 정보를 얻고, 이를 수신신호 

세기로 사용하였다. 

Deep Kriging 은 그림 1 과 같이 UAV 의 위치 좌표 

데이터와 수집한 RSRP 데이터를 입력 받아 처리하는 

구조이다. 또한, 입력 변수는 안테나 이득, 기지국과 

측정지점까지의 3D 거리, 기존의 OK 알고리즘으로 1 차 

추정된 RSRP 값을 사용한다. 

Kriging 프레임 워크에서는 추정된 위치 수신신호 

세기를 다음과 같이 표현할 수 있다. 

𝑟̂(𝑙0) = ∑ 𝜆𝑖𝑧(𝑙𝑖)

𝑁

𝑖=1

+ ∑ 𝜆𝑖𝑚(𝑙𝑖)

𝑁

𝑖=1

                  (1) 

(1)에서 𝑙0는 추정위치, 𝑙𝑖는 𝑁개의 수집한 위치, 𝑧(𝑙𝑖)는 

수집한 신호의 residual 성분, 𝑚(𝑙𝑖)는 trend surface성분, 

𝜆𝑖는 수집한 신호의 가중치이다. 
이를 바탕으로 Deep Kriging 모델은 Spatial Sparse 

Attention Network(SSAN), Meta Polynomial Network 

(MetaPN), Kriging Decoder 로 구성된다. SSAN 블록은 

Kriging 프레임 워크의 residual 성분을 찾는 역할을 

한다. SSAN 을 통해 Kriging 연산에 필요한 Semi-

Variogram 행렬을 Attention score 연산을 통해 

생성한다[3]. 또한, MetaPN 블록은 Kriging 프레임 

워크의 trend surface 성분을 생성하고, SSAN 과 

MetaPN 으로 도출한 두 성분은 Kriging Decoder 에서 

최적화된 가중치를 계산하는 연산을 통해 수신신호의 

세기를 추정한다. 
 실험은 주변 건물과 물체에 의한 반사가 적은 시골 

환경에서 수행되었다. 따라서, Line of Sight(LOS) 성분과 

Snell’s law 에 의한 지면 반사 성분으로 모델링 된 two-

ray 경로손실 모델로 수신신호 세기가 모델링 된다. 성능 

평가는 OK 기법 및 Transformer 모델과 비교를 통해 

이루어졌으며, Transformer 모델은 동일한 입력 변수 

조건 하에서 Hyper Parameter 최적화를 거친 후 

평가하였다. 



 

 Deep Kriging Transformer 

Batch size 64 256 

Epochs 200 300 

Hidden 

Dimension 
64 64 

Learning rate 0.001 0.001 

 

표 1. 두 모델의 Hyper Parameter 

 

표 1 은 두 모델에서 사용한 Hyper Parameter 를 

정리한 표이다. 학습 데이터 규모가 제한적임을 고려해, 

과적합을 방지하고 학습 안정성을 높이고자 Batch Size와 

Hidden Dimension 의 크기는 작게 설정하였다.  

 

 

(a) OK 기법과 Deep Kriging 기법 성능 비교 

 

(b) Transformer 와 Deep Kriging 의 RMSE 비교 

 

(c) Transformer 와 Deep Kriging 의 MAE 비교 

그림 2. Deep Kriging 성능 비교 

그림 2(a)는 Deep Kriging, 전통적인 Kriging, Trans-

former 모델의 성능 비교 결과를 나타낸다. 우선 Deep 

Kriging 은 전통적인 Kriging 기법 대비 현저히 낮은 

오차율을 보이며 성능을 압도하였다. 이는 Kriging 

기법에 Deep Learning 을 결합하는 접근 방식이 성능 

향상에 매우 효과적임을 시사한다. 다음으로 그림 2(b), 

(c)는 RMSE 와 MAE 지표를 통해 Deep Kriging 과 

Trans-former 를 비교한 결과이다. 두 모델은 

전반적으로 오차 범위 내에서 유사한 성능을 보였다. 

RMSE 측면에서는 Transformer 가 일부 구간에서 소폭 

우위를 점하기도 했으나, MAE 측면에서는 Deep 

Kriging 이 동등하거나 더 우수한 성능을 기록하였다. 

이는 Deep Kriging 이 일부 샘플에서 큰 오차를 보일 

가능성이 있으나, 전반적인 예측 값의 평균적인 정확도는 

Transformer 보다 정밀함을 시사한다.  

본 실험이 진행된 LOS 환경에서는 두 모델의 성능 

차이가 크지 않지만, 도시 환경과 같이 복잡한 

환경에서는 그 격차가 확대될 것으로 예상된다. Deep 

Kriging 은 K-Nearest Neighbor(KNN) 알고리즘을 통해 

인접 신호 간 공간적 상관 관계를 효과적으로 

포착하지만, Transformer 의 경우 데이터 전체의 특징에 

의존하는 경향이 있다. 따라서 신호 세기의 급격한 

변화가 빈번하게 일어나는 도시 환경에서는 Deep 

Kriging 이 더 유리할 것으로 판단되며, 이에 대한 

추가적인 검증을 할 예정이다. 

 

Ⅲ. 결론  

 본 연구를 통해 공간 보간 기법인 Kriging 과 Deep 

learning 의 결합을 통한 RSRP 예측 모델이 기존의 

Transformer 모델 대비 우수한 성능을 보임을 

확인하였다. 그러나 Deep Kriging 모델은 Feature 

성분의 정확도에 따라 예측 성능이 민감하게 반응하는 

특성을 보인다. 따라서 향후 연구에서는 Feature 의 

정밀도를 향상시키는 기법에 대한 논의가 선행되어야 

하며, 나아가 실제 도시 환경에서의 데이터 수집 및 

추가적인 검증 수행을 진행할 예정이다. 
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