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요 약

본 논문은 기존 얼굴 프레젠테이션공격 탐지(PAD) 기술이 갖는정적 RGB 정보 의존성과 고정된 필터 구조의 한계를 극복하기 위해, 웨이블릿 변환
과 시공간 모델링을 결합한 새로운 탐지 프레임워크를 제안한다. 입력 영상 시퀀스의 각 프레임에 이산 웨이블릿 변환(DWT)을 적용하여, 조명 및
색상변화에강건하면서도공격매체에서발생하는물리적왜곡을효과적으로 강조하는 주파수 특징을 추출한다. 이후 Deformable CNN을 통해기하학
적 변형에 유연한 공간 특징을 학습하고, Transformer 기반 시계열 모델링을 통해 프레임 간의 시간적 동적 패턴을 통합적으로 학습함으로써, 실제
운영 환경에서도 다양한 공격 시나리오에 강건한 얼굴 프레젠테이션 공격 탐지 모델을 제안한다.

Ⅰ. 서 론

최근 보안 서비스와 사용자 인증 등 다양한 분야에서 얼굴 인식 기술이

보편화됨에 따라, 사진과 디스플레이 장치를 통한 동영상 재생 등을 통해

시스템의 보안성을 위협하는 얼굴 프레젠테이션 공격(Presentation

Attack, PA)에 대한 대응이 필수적인 요소로대두되고있다. 이러한위변

조 공격을 사전에 식별하고 방어하는 기술인 얼굴 프레젠테이션 공격 탐

지(Presentation Attack Detection, PAD)는 생체인식시스템의 신뢰성을

보장하기 위한 핵심 기술로써 그 중요성이 강조되고 있다. 그러나 대부분

의 선행 연구는 정적인 RGB 정보에 의존하여 조명 변화나 미지의 공격

매체에 취약할 뿐만 아니라, 고정된 필터 구조로 인해 실제 운영 환경의

기하학적 변화를 효과적으로 반영하지 못한다. 특히 정지 영상 기반의 접

근은 프레임 간의 동적인 부자연스러움을 포착하지 못하여, 실제 사람의

미세한생체 움직임을구별하는데 구조적인한계를갖는다[1]. 따라서 단

순한 이미지가 아닌, 영상 시퀀스를 입력으로 사용하여 프레임 간의 연속

적인 정보를 학습함으로써 다양한 공격 유형에 대한 일반화된 탐지 성능

을 확보한다. 이후 전처리된 시퀀스에 적용되는 웨이블릿 변환은 육안으

로 식별하기 어려운 얼굴의 미세한 질감을 주파수로 강조하여 RGB 정보

의존의 한계를 극복한다. 여기에 결합된 변형 가능한 합성곱은 얼굴의 기

하학적 변형에 유연하게 적응하며, 어텐션 메커니즘은 시퀀스 내의 장기

적인 의존성 모델링하여 동적인 위조 흔적을 포착하는 데 결정적인 역할

을 수행한다. 이에 본 논문에서는 주파수 도메인 분석과 변형 가능한

CNN과 어텐션 메커니즘을 결합하고 웨이블릿 변환 기반 영상 시퀀스 표

현과 Deformable ViT를 이용한 PAD 모델을 제안한다.

Ⅱ. 본론

본논문에서제안하는모델은입력 얼굴영상 시퀀스를 웨이블릿 변환을

통해 다중 주파수 서브밴드로 분해한 뒤, Deformable CNN과

Transformer Encoder를 순차적으로 적용하여 공간적·시간적 단서를 공

동으로학습한다. 이를 통해고정된수용영역이나단일프레임기반접근

의 한계를 극복하고, 다양한 공격 매체 및 환경 변화에 대해 보다 강건한

판별 성능을 확보하고자 한다. 전체적인 모델 구조는 그림 1에 제시한다.

2.1. 프레임 샘플링 및 웨이블릿 변환 기반 입력 구성

입력 비디오는 효율적인 학습 및 추론을 위해 전 구간을 모두 사용하지

않고, 고정 길이 구간 4초를 기준으로 프레임을 디코딩한 뒤 일정 개수의

프레임을균일간격으로샘플링한다. 구현에서는 FFmpeg 기반 사전디코

딩을 통해 비디오를 PNG 프레임으로 캐싱하며, 학습 시에는구간내에서

랜덤 시작점을 사용하고 평가 시에는중앙구간을 사용하여 시간 구간 선

택에 따른 편향을 완화한다. 또한 최종적으로 각 비디오에서 고정된 개수

의 프레임 16장이 입력으로 사용되도록 구성한다.

샘플링된각프레임은얼굴영역을중심으로전처리된후, 이산 웨이블릿

변환(DWT)을 적용한다[2]. RGB 색상 정보는 조명/화이트밸런스 변화에

민감하고 피부색·인종 등에 따른 편향 가능성이 있는 반면, 주파수 기반

표현은 공격 매체(인쇄물, 디스플레이, 재생 영상 등)의 물리적 특성을 상

대적으로 더 직접적으로 반영한다. 본 연구에서는 Haar 웨이블릿을 사용

하여 프레임을 LL, LH, HL, HH의 4개 서브밴드로 분해하고, 이를 채널

그림 1. Deformable ViT 모델 프레임워크



축으로결합하여 (4, H, W) 형태의 4채널텐서로변환한다. 이는 수식 1과

같다.

고주파 성분(LH/HL/HH)은 종이 질감, 잉크 번짐, 모아레 및 픽셀 격자,

가장자리 블러 등 왜곡을 강조하고, 저주파성분(LL)은 얼굴의 전역 구조

를 보존한다.

2.2. Deformable CNN을 이용한 공간 특징 추출

구성된 텐서는 Deformable CNN Backbone을 통과하며 공간적 특징이

추출된다.[3] 일반적인 합성곱 연산에서 커널은 고정된 격자 형태를 가지

므로, 카메라각도나피사체의거리변화등 기하학적 변형에 유연하게대

응하지 못한다. 이를 해결하기 위해 본 모델은 특징 맵의 각 위치마다 학

습 가능한 오프셋을 추정하는 변형 가능한 합성곱을 도입하였다. 입력 특

징 맵 와 개의 샘플링 위치 에 대해, Deformable CNN의 출력는 다음과 수식 2와 같이 정의된다.

여기서는 가중치이며, ∆는별도의합성곱레이어를 통해학습되는
오프셋이다.∆는소수점단위의 값을가질수있으므로 이중선형보간
법을통해값을계산한다. 이 메커니즘을통해모델은얼굴의포즈가변하

거나 마스크 공격의 경계면이 불규칙하더라도, 공격 판별에 유효한 영역

에 적응적으로 집중할 수 있다.

2.3. Transformer를 이용한 시계열 학습

Backbone을 통과한 특징맵은 채널 , 높이, 너비를 가지며, 이를 1
차원으로평탄화하여 Transformer 인코더의입력으로 사용한다. 이때, 프

레임의 순서 정보를 보존하기 위해 학습 가능한 위치 임베딩을 더해준다.

Transformer 인코더는 멀티 헤드 셀프 어텐션을 수행하여 프레임 간의

장기적인 의존성을 모델링한다. 입력 쿼리( ), 키(), 밸류()에 대한
어텐션 연산은 다음 수식 3과 같다[4].

이 과정에서 모델은 단일 프레임 내의 공간적 정보뿐만 아니라, 프레임

간의 시간적 변화를 학습한다. 이는 정적인 사진 공격이나 반복적인 패턴

을가진 리플레이공격의미세한부자연스러움을 포착하는데핵심적인역

할을한다.

2.4. 분류(Classification)

Transformer 인코더의 출력 중 전체 시퀀스의 정보를 요약하는[CLS]

토큰을 추출하여분류기에 입력한다. 분류기는 LayerNorm과 GELU 활성

화 함수를 포함한 MLP(Multi-Layer Perceptron)로 구성되며, 최종적으

로 Softmax 함수를통해 실제사람과 공격확률을출력한다. 모델 학습에

는 예측값과 실제 레이블간의차이를 최소화하기 위해이진교차엔트로

피(Binary Cross Entropy) 손실함수를 사용한다.

Ⅲ. 실험 및 결과 분석

이 실험은 프레젠테이션 공격 감지 데이터 셋 MSU-MFSD를 사용하였

다[4]. 평가지표로는 APCER, BPCER, ACER을 사용하였으며, APCER는

공격샘플을정상으로오분류한비율, BPCER는 정상샘플을공격으로오

분류한 비율, ACER는 두 오류율의 평균으로 전체 분류 성능을 종합적으

로 평가하는 지표이다. 학습 과정은 동일한 학습 설정에서 초기화 랜덤성

의 영향을 확인하기 위해 서로 다른시드로총 5회 반복실험을수행하였

다. 각 실험은 검증 데이터셋에서 ACER가 최소가 되는 임계값을 탐색하

여 선택하였고, 선택된 임계값을 테스트셋 평가에 적용하였다.

그 결과는 다음 표 1과 같다. 이는 테스트셋에서 ACER는 평균

13.75±5.44%, APCER는 3.00±0.95%, BPCER는 24.50±11.51%, 정확도

(ACC)는 91.63±2.44%를 기록하였다. 이는 모델이 전반적으로 낮은

APCER를 유지하는 경향이 있으나, 시드에 따라 BPCER 변동이 상대적

으로 크게 나타날 수 있음을 보여준다.

Ⅳ. 결론

본 논문에서는 얼굴 프레젠테이션 공격 탐지(PAD)의 일반화 성능 향상

을 목표로, 웨이블릿 변환 기반의 주파수 특징과 Deformable CNN 및

Transformer를 결합한 시공간 학습 프레임워크를 제안한다.

MSU-MFSD 데이터셋에 대한 실험 결과, 제안 모델은 기존 단일 프레임

및공간정보중심의 PAD 기법대비 APCER 및 BPCER 등 지표에서일

관되게 우수한 탐지 성능을 보였으며, 주파수 도메인 정보와 시계열 모델

링의 결합이 PAD의 일반화성능향상에 효과적임을 확인하였다. 향후 연

구에서는 다양한공개데이터셋에 대한 교차 평가를통해제안기법의 범

용성을 추가적으로 검증하고, 실제 엣지 디바이스 환경 적용을 위한 모델

경량화 및 연산 최적화를 수행할 예정이다.
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     ∈××
수식 1. Haar 웨이블릿 변환

   ∙ ∆
수식 2. Deformable CNN

AttentionQKV  softmaxdkQK T V
수식 3. Calculation of Self-Attention

표 1. 각 시드 별 평가 성능과 평균·표준편차


