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요 약  

 
UAV(unmanned aerial vehicle)는 많은 분야에서 잠재적 활용 가능성 때문에 미래 기술로 주목을 받고 있다. 이에 따라, 

차세대 셀룰러 통신 네트워크는 지상의 유저 뿐만 아니라 UAV 와 같은 항공의 기체까지 통신영역을 확장하게 된다. 이를 

효율적으로 운용하기 위해서는 지상과 항공통신 간의 스펙트럼 공존을 위한 자원 관리가 필수적이다. 본 연구에서는 

3 차원 공간에서의 스펙트럼 감시를 위한 스펙트럼 공존 기법은 연구한다. 특히, Kriging 해법을 U-Net 구조에 응용한 

딥러닝 신경만 구조를 제안하고 성능을 검증한다. 

. 

 

 

Ⅰ. 서 론  

차세대 셀룰러 통신 환경에서는 주파수 자원이 

제한적인 반면, 높은 데이터 전송률과 신뢰성에 대한 

요구가 지속적으로 증가함에 따라 효율적인 스펙트럼 

관리가 중요한 과제로 대두되고 있다. 특히, UAV 를 

포함하는 셀룰러 환경에서는 UAV 와 기존 지상 사용자 

단말이 동일한 셀룰러 스펙트럼을 공유하면서도 각자의 

서비스 품질(QoS) 요구사항을 충족해야 한다. 특히 

UAV 의 제어 및 통신 링크는 높은 신뢰성과 낮은 지연 

특성을 요구하므로, QoS 요구사항을 만족시키기 위해 

3 차원 공간에서의 정확하고 동시적인 스펙트럼 점유 

상태 모니터링이 필수적이다. 

서로 다른 위치에서 수집된 스펙트럼 측정 데이터를 

이용한 스펙트럼 맵 보간 기법은 그동안 활발히 

연구되어 왔다. Kriging 은 측정 지점 간의 공간적 

상관관계를 활용하여 최적의 선형 불편 추정치(BLUE)를 

제공하는 대표적인 스펙트럼 예측 방법이며, 기존 

연구에서는 이를 이용해 UAV 가 서로 다른 고도에서 

측정한 스펙트럼을 3 차원 영역으로 확장하여 보간하였다. 

본 연구에서는 UAV 가 3 차원 공간의 스펙트럼 점유 

상태를 수집하는 환경을 고려하며, 두 기준 고도에서 

수집된 측정 데이터를 이용해 중간 고도의 스펙트럼을 

추정하는 신경망 기반 알고리즘을 제안한다. 제안된 

기법은 U-Net 인코더 구조에 Kriging 기반의 필터 

블록을 병렬로 연결하여 기존의 U-Net 구조보다 성능을 

향상시킨다. 실제 측정 데이터셋을 이용한 시뮬레이션을 

통해 제안 기법이 기존 Kriging 보간 및 다른 신경망 

기반 방법보다 우수한 성능을 보임을 확인할 수 있다. 

Ⅱ. 본론  

가. UAV 를 이용한 3 차원 스펙트럼 감시 

UAV 를 이용한 스펙트럼 센싱을 이용하여 3 차원 

공간에 대해 스펙트럼을 모니터링하는 시나리오를 

가정한다. 스펙트럼 센서를 탑재한 UAV 가 3 차원 

커버리지 영역을 이동하면서 특정 주파수 대역에 대해 

스펙트럼 점유 상태를 측정한다. 3 차원 영역을 

효율적으로 커버하기 위해 패턴화된 경로를 따라 

스캔하고 여러 고도를 반복적으로 이동한다. 여러 

고도에서 스펙트럼 점유 정보 (수신 신호 세기)를 수집한 

후, UAV 는 서로 다른 고도 수준에서 수신된 신호 

세기를 보간하여 해당 지역의 3 차원 공간에 대한 

스펙트럼 점유 상태를 재구성한다. 이때, 매우 작은 고도 

간격마다 정밀하게 스펙트럼을 측정하는 것은 

비효율적이므로, 3 차원 스펙트럼 맵을 완성하기 위해 

고도 방향의 보간 기법을 적용한다. 

 

나. Ordinary Kriging 을 이용한 스펙트럼 보간 

본 절에서는 ordinary Kriging(OK) 기반의 스펙트럼 

보간 기법을 소개한다. OK 는 주변의 관측값들을 

기반으로 평균 제곱 예측 오차(MSE)를 최소화함으로써 

미지 위치에서의 값을 추정하는 방법이다. OK 해법의 

최적의 가중치 값은 다음의 수식을 통해 도출된다 [1]. 

      [
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여기서 𝜇 는 최적화된 가중치, Γ는 관측 값 간의 semi-

variogram 행렬,  𝛾0 는 미지의 값과 관측 값 간의 

semi-variogram 벡터이다. 식 (1)을 통해 Kriging 가중

치 벡터를 계산한 후, 알려진 위치에서 수신된 신호 세기

를 선형 결합함으로써 미지 위치에서의 수신 신호 세기

를 다음의 수식으로 보간할 수 있다. 

𝑟̂(𝑙0) = ∑ 𝜇𝑖
∗𝑀

𝑖=1 𝑟(𝑙𝑖).              (2) 

여기서 𝑙0는 추정하는 미지의 위치, 𝑙𝑖는 관측 위치, 𝑟(𝑙𝑖)



 

는 측정된 수신 신호 세기이다. 

 

다. Kriging 해법과 결합한 U-Net 인코더 설계 

U-Net 구조는 여러 개의 인코더 블록, 하나의 병목 

구조, 그리고 여러 개의 디코더 블록으로 구성된다.[2] 

인코더, 병목, 디코더 블록 모두 두 번의 2-D 

convolution – batch normalization(BN) – rectified linear 

unit(ReLU)흐름으로 구성되어 있다. 하지만, 인코더 

블록에서는 마지막에 maxpooling(MP) 연산이 출력되고, 

병목 구조는 dropout 연산이 출력되며, 디코더 블록은 

ReLU 의 출력이 그대로 사용된다. 본 논문에서 제안하는 

신경망 구조는 인코더 블록 두 번째 2-D convolution 

단계에서 OK 해법에서 얻은 가중치를 기반으로 설계한 

Kriging spatial filter 를 병렬 구조로 통과시킨다. 특히, 

2-D convolution 연산은 주변 픽셀 값에 학습 가능한 

가중치를 곱해 합산하는 방식으로 동작하기 때문에, 주변 

샘플 지점을 관측한 위치로 간주할 경우 Kriging spatial 

filter 에 의한 연산은 가중치 산출 방식만 다를 뿐 

수학적으로 동일한 형태를 갖는다. 이러한 관점에서 본 

연구에서는 U-Net 인코더 블록 내에 Kriging 공간 

필터의 출력을 결합한 구조를 제안한다. 

 

라. 실측 데이터셋 수집 

본 논문에서 사용된 실측 데이터는 미 노스캐롤라이나 

주립대(NC State Univ.)에서 구축한 AERPAW 

실험장에서 수집되었다. 기지국(eNB) 타워가 설치된 

시골 환경에서 실험이 수행되었다. LTE 기지국 타워를 

software-defined radio (SDR)를 사용하여 구축하였고, 

주파수 3.51 GHz 를 사용하여 LTE 하향링크 신호를 

지속적으로 송신하였다. SDR 수신기와 GPS 모듈을 

탑재한 UAV 는 사전에 설계된 비행 경로를 따라 실험 

지역을 비행하며 I/Q 데이터 샘플을 수집하였고, 동일한 

경로를 유지한 채 30 m, 50 m, 70 m, 90 m, 110 m의 여러 

고도에서 비행을 반복하였다. 수집된 I/Q 데이터로부터 

LTE 수신기 알고리즘을 통해 RSRP 값을 도출하였고, 

이를 수신 신호 세기로 사용하였다.[3] 

 

마. 시뮬레이션 결과 

 
그림 1 제안된 알고리즘과 ViT, CNN, OK, PL 알고

리즘과 RMSE 성능 비교. 

그림 1 은 본 논문에서 제안한 Kriging 을 결합한 U-

Net 인코더 구조(U-Net-Kriging)를 vision 

transformer(ViT), convolution neural network(CNN), 

OK 기반 추정, pathloss(PL) 기반 추정 기법들과 RMSE 

성능을 비교한 결과를 보여준다. 결과로부터 제안한 

알고리즘이 다른 벤치마크 알고리즘 대비 RMSE 가 작게 

나옴을 확인할 수 있다. 또한, 추정 시나리오를 고도 

50M 와 70M 로 나누었고, 70M 의 경우 20M 간격과 

40M 간격을 보간하는 경우로 나누었다. 

  

그림 2 Kriging split factor에 따른 RMSE 성능비교 

제안한 U-Net 인코더 구조는 Kriging spatial filter 를 

통과한 결과와 2-D convolution을 통과한 결과를 결합할 

때 결합 비율을 정하는 Kriging split factor (α) 설정이 

필요하다. 예를 들어, α =1으로 설정하면 Kriging spatial 

filter 결과를 전혀 사용하지 않게 된다. 그림 2 의 결과는 

α에 따른 RMSE 성능 변화를 보여준다. 결과로부터 

최적의 α 값이 추정 고도 시나리오에 따라 다름을 알 수 

있고, 기존의 U-Net 인코더 구조에 비해서도 성능 

개선이 있음을 보여준다. 

 

Ⅲ. 결론  

본 논문에서는 UAV 기반 3 차원 스펙트럼 모니터링 

환경에서 고도 방향 스펙트럼 보간을 위한 Kriging 기반 

신경망 구조를 제안하였다. OK 의 공간 상관 특성을 U-

Net 인코더 구조에 통합함으로써, 기존 Kriging 기반 

보간 및 단순 신경망 기반 방법 대비 향상된 스펙트럼 

추정 성능을 달성하였다. 실제 측정 데이터를 이용한 

실험 결과, 제안 기법은 다양한 고도 시나리오에서 

RMSE 성능을 효과적으로 개선함을 확인하였다. 
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