
배지 수분 처리에 따른 토마토 생육과 생리 반응 및 식물 유도 전기적 신호 모니터링

이규원, 최주환, 박근호

한국전자기술연구원

rbdnjs704@keti.re.kr, netside@keti.re.kr, root@keti.re.kr

Monitoring of Tomato Growth, Physiological Responses, and Plant-Induced Electrical
Signals as Influenced by Water Content Treatment of Media

　Gyuwon Lee, Juhwan Choi, Keunho Park

Korea Electronics Technology Institute

요 약

본 연구는 배지 수분 조건에 따른 토마토의 생육 및 생리 반응을 분석하고, 식물 유도 전기적 신호(plant-induced electrical
signal)을 활용한 스트레스 진단 가능성을 평가하고자 수행되었다. 배지 수분 함량을 다르게 설정하였으며, 대조구, 과습 및
건조 처리구를 설정하여 생육, 생리 지표와 식물 유도 전기적 신호를 측정 및 비교·분석하였다. 그 결과, 배지 수분 스트레스
조건에서 생육 및 광합성관련생리지표가 감소하였으며, 식물 유도 전기적 신호 수치또한낮아지는것을확인할 수있었다.
식물 유도 전기적신호는 최대 광합성 속도와 최대 양자 수율과 유의한상관성을 보였으며, 이를 통해식물 유도 전기적 신호
가 배지 수분 스트레스에 따른 토마토의 생리적 반응을 평가하기 위한 비파괴적 모니터링 지표로 활용 가능성을 확인하였다.

Ⅰ. 서 론

시설 원예에서 토마토는대표적인 고부가가치 작물로서, 생육의안정성

과수량확보를위해작물의생육을파악할수있는비파괴적측정방법이

요구되고있다. 배지 수분이과도하거나부족할경우뿌리의산소공급감

소, 양·수분 흡수 불균형 등이 발생하여 생육 저하 및 생리적 스트레스를

유발한다. 기존의 생육 진단 방법은 육안으로 작물의 상태를 확인하거나

초장, 생체중 등 직접 생육 지표를 측정하는 방식을 활용하고 있으며, 해

당 방법은 연속적이고 비파괴적인 모니터링에는 한계가 있다. 또한 환경

센서의 데이터만으론 식물 자체의 생리 반응을 직접 반영하여 작물의 현

재상태를알기어렵다. 본 연구에서는식물의생체신호를기반으로실시

간 모니터링 기술 중 식물의 전기적 반응을 통해 모니터링 기술인 식물

유도 전기적 신호(PIES) 방법을 활용하여 배지 수분 스트레스에 따른 토

마토의 생리 반응과 전기적 신호와의 관계를 분석하고, 해당 신호의 스트

레스 진단 지표로서의 활용 가능성을 검토하고자 한다.

Ⅱ. 본 론

본 연구에서는 토마토(Lycopersicon esculentum Dafnis)를 공시 작물

로 하여 비닐온실에서 수행되었다. 실험에 사용된 토마토의 생육 상태를

최대한 균일하게 유지하고, 환경 스트레스에 따른 작물의 반응을 분석하

기 위해 온도, 습도, 양액 등의 환경조건을 최대한 같은 환경을 유지하여

재배하였다. 배지 수분 함량에 따른 스트레스를 유도하기 위해서는 제 2

화방 개화시기에맞춰배지 수분 처리를 실시하였다. 처리는대조구, 과습

처리구, 건조 처리구의 3수준으로 설정하였다. 대조구는 기본 급액 및 배

액 조건을 유지하여, 배지 수분 50~60% 수준으로 관리하였으며, 과습 처

리구는 급액량을 대조구 대비 2배로 증가시키고 배액량을 제한하여 80%

이상의 배지 수분 함량을 유지하였다. 건조 처리구는 급액량을 대조구 대

비 50% 감소 시키고, 배액량을 최대로 배출할 수 있게 조절하여 배지 수

분 함량을 40% 이하로 설정하였다. 온실 내 환경 요인은 온도, 상대습도,

광량 및 이산화탄소 농도를 측정하였다. 실험 기간 동안 대조구와 처리구

간환경 조건 차이를 최소화하여배지 수분 조건에 따른영향만을 분석할

수 있도록 하였다.

배지 수분 처리에 따른 토마토의 생육 및 생체 정보를 분석하기 위해

생육지표와생체정보를분석하였다. 생육 지표평가는생육조사결과를

활용하였고, 정식 후 58일 후 생육조사를 실시하였다. 생육 조사는 초장,

줄기 직경, 개화군 수, 엽수, 엽장, 엽폭, 생체중, 건물중, 건물 함량 및 엽

면적을 측정하였다. 생체 정보 평가는 엽록소 함량 지수(SPAD), 최대 양

자 수율(Fv/Fm)과 최대 광합성 속도(Amax)를 측정하여 분석하였다. 측정

된 생육 및 생체 정보와 식물 유도 전기적 신호 간의 관계를 분석하기 위

해 상관 분석을 실시하였다.

배지 수분 처리에 따른 토마토의 생리 반응을 전기적 신호로 모니터링

하기 위해 Junsmeter II(Prumbio, Suwon, Korea)를 이용하여 식물 유도

전기적 신호를측정하였다. 측정 장치는태양광전지판, 채널 박스, 데이터

송수신기 및 스테인리스 핀으로 구성되었으며, 토마토 줄기 하단부에 스

테인리스 핀을 삽입하여 휘트스톤 브리지 방식으로 유관속 전기 저항을

측정하였다. 측정된 저항값은 10분 간격으로수집되어줄기 직경(D, mm),

바늘 길이(L, mm), 바늘의 지름(d, mm) 및 상수(k)를 이용하여 수식 1과

같이 식물 유도 전기적 신호 값을 산출하였다. 각 처리구별로 5개체를 대

상으로 측정하였다.

    ××
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생육 및 생체정보와 식물 유도 전기적 신호 간의 관계는 상관 분석을, 처

리 간차이는 일원배치 분산분석(ANOVA)과 LSD 사후 검정으로 검정하

였다.

실험 기간 동안 온실 내 온도, 상대습도는 그림 1, 2와 같이 대조구와

각 배지 수분 처리구 간에 유의한 차이를 보이지 않았다.

배지 수분 처리 결과, 대조구는 50~60%의 배지 수분 함량을 유지하였

다. 그림 3과 같이 과습 처리구는 80% 이상, 건조 처리구는 40% 이하의

배지 수분 상태를 나타냈으며, 배지 수분 처리에 의한 스트레스가 나타났

을 것으로 판단된다.

생육 조사 결과, 표 1과 같이 과습 및 건조 처리구에서 대조구에 비해

초장, 엽면적, 생체중 및 건물중이 낮게 나타나는 경향을 보였다. 생체 정

보 지표 분석결과, 표 2와 같이 최대 양자수율과 최대광합성 속도과습

및 건조 처리구에서는 유의적으로 낮게 나타났다.

표 1. 배지 수분 처리에 따른 토마토 생육 지표

Treatment
Plant height

(cm)
Stem Diameter

(mm)
Flowering 

group
NO. 

leaves
Leaf 

length
(cm)

Leaf 
width 
(cm)

Control 154±0.4a 8.3±0.4a 2.8±0.2a 13.8±0.4a 35.4±0.7a 30.9±1.5a

High W.C. 144.1±2.1b 6.1±0.1b 2.7±0.1a 13.3±0.2a 30.5±1.4a 24.7±0.9a

Low W.C. 125.3±3.2c 8.0±0.4a 2.1±0.1b 10.3±0.6b 31.9±2.5a 30.7±3.1a

Means separation within columns by Least Square Difference(LSD) at Ρ = 0.05.

Treatment
Fresh weight (g) Dry weight (g) Dry matterz (%) Leaf area

(cm2)Leaf Stem Leaf Stem Leaf Stem
Control 151.6±4.7a 141.1±9.6a 15.9±0.4a 12.7±0.7a 10.5±0.2b 9±0.2a 3036.7±152.5a

High W.C. 129.6±3.5b 111.3±5.4b 14.3±0.5b 10.6±0.5b 11.1±0.3ab 9.5±0.1ab 2570.8±34.8b

Low W.C. 115.6±3.1c 100.3±3.2b 13.3±0.4b 10±0.2b 11.5±0.1a 10±0.2b 2406.4±111.9b

zDry matter is the values of the dry weight divided by the fresh weight.
Means separation within columns by Least Square Difference(LSD) at Ρ = 0.05.

표 2. 배지 수분 처리에 따른 토마토 생체 정보 지표

Treatment
SPAD
value

Fv/Fm
Amax

(µmol·m-2·s-1) 
Control 54.3±0.8a 0.83±0.001a 15.03a

High W.C. 53.5±0.6a 0.792±0.009b 13.84b

Low W.C. 52.2±0.1a 0.801±0.003b 13.32b

Means separation within columns by Least Square Difference(LSD) at Ρ = 0.05.

식물 유도전기적신호값과 생육및 생리 지표간의상관 분석 결과, 표

3과 같이식물유도 전기적신호과 최대양자 수율값, 광합성 속도는 각각

0.59, 0.65로 양의 상관 관계를 보였으며, 엽록소 함량 지수와의 상관성은

낮게나타났다. 이는 표 2와 같이 엽록소함량지수가배지수분 처리에따

른 변화를 나타내지 않았기 때문으로 사료된다.

그림 4. 배지수분처리에따른토마토식물유도전기적신호모니터링

Ⅲ. 결 론

본연구에서는배지수분처리에따른토마토의 생육과생리 반응을분

석하고식물유도전기적 신호와의 연관성을 통해 생육 지표로써 사용 가

능성을 검증하였다. 배지 수분 처리에 따른 스트레스에 대한 영향력을 보

기위해토마토의생육과생리지표를측정한결과, 대조구에비해과습과

건조 처리구에서 전반적으로 생육이 낮게 나타났으며 이를 통해 배지 수

분함량에 따른 스트레스가생육차이에 영향을미쳤음을확인할 수 있었

다. 식물 유도전기적신호와생리지표와의상관분석을통해연관성을확

인한 결과, 엽록소 함량 지수를 제외한 지표에서 각각 0.59, 0.65의 높은

양의 상관계수를 보여, 식물 유도 전기적 신호가 토마토의 생리적 스트레

스를 평가하기 위한 지표로 사용될 수 있을 것으로 사료된다.
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그림 1. 온실 내 온도 그래프

그림 2. 온실 내 상대 습도 그래프

그림 3. 배지수분 함량 그래프

표 3. 배지 수분 처리에 따른 토마토 PIES와 SPAD, Fv/Fm 및
Amax 간의 상관 계수

PIES SPAD Fv/Fm Amax

PIES 1
SPAD -0.06 1
Fv/Fm 0.59 0.50 1
Amax 0.65 -0.63 0.21 1


