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요 약  
Split Federated Learning(SFL)은 Raw data 와 라벨을 클라이언트에 유지하지만, Non-IID 환경에서 도메인별 smashed feature 분포 

차이로 일반화 성능이 저하된다. 본 논문은 Laber-local SFL 에서 cut-layer 특징 정규화와 클래스 프로토타입 기반 특징 증류를 결합해 

도메인 시프트를 완화하는 방법을 제안한다. 클라이언트는 로컬 라벨로 프로토타입을 계산하고, 서버는 이를 집계한 전역 프로토타입을 

배포하여 정규화된 표현을 정렬한다. 또한 로컬–전역 프로토타입 거리로 시프트를 추정해 증류 강도를 적응적으로 조절함으로써 부정적 

전이를 억제한다. 실험을 통해 제안 방법이 SFL baseline 대비 도메인 시프트 환경에서 일관된 성능 향상을 보임을 확인하였다. 

 

 

Ⅰ. 서 론  

개인정보 보호, 규제 준수, 보안 요구가 강화되면서 원천 

데이터를 공유하지 않고 협력 학습을 수행하는 분산 학습의 

중요성이 커지고 있다. Federated Learning(FL)은 각 

클라이언트가 로컬 데이터로 학습한 뒤 업데이트를 서버에서 

집계하는 방식(FedAvg)으로 이를 가능하게 한다 [1]. 그러나 

실제 분산 데이터는 대개 Non-IID 로 클라이언트 간 분포 

차이가 존재하며, 이는 전역 모델의 수렴 및 일반화 성능 

저하로 이어질 수 있다. 또한 FL 은 클라이언트가 전체 모델을 

학습해야 하므로 자원 제약이 큰 환경에서 부담이 크다 [1]. 

이를 완화하기 위해 Split Learning(SL)과 결합한 Split 

Federated Learning(SFL)이 제안되었다 [2,3]. SFL 에서는 

클라이언트가 네트워크 앞단의 모델을 실행해 cut layer 의 

출력인 smashed feature 를 서버로 전송하고, 서버는 나머지 

모델로 예측을 수행한다. 하지만 Non-IID 환경에서는 

클라이언트별 앞단의 모델이 도메인 특화 표현을 학습하기 쉬워, 

동일 클래스라도 smashed feature 분포가 달라질 수 있다. 그 

결과 서버 top 모델은 라운드마다 변하는 입력 분포(=cut-layer 

표현 공간의 domain shift)를 학습하게 되어 학습 안정성과 

성능이 악화될 수 있다 [3,4]. 특히 프라이버시를 위해 라벨이 

클라이언트에만 존재하는 label-local SFL 에서는 서버가 지도 

신호로 표현 정렬을 직접 수행하기 어렵다는 제약이 존재한다 

[3,4].  

이에 본 논문은 label-local SFL 에서 도메인 시프트에 강건한 

학습을 위해, (i) cut-layer 특징 정규화로 smashed feature 의 

통계적 변동을 완화하고, (ii) 클래스 프로토타입 기반 feature 

distillation 을 통해 샘플 단위 특징 공유 없이 의미 수준의 

정렬을 유도하며, (iii) 로컬–전역 프로토타입 거리로 shift 

수준을 추정해 증류 강도를 적응적으로 조절하는 방법을 

제안한다. 제안 방식은 추가 통신을 클래스 요약 정보 수준으로 

제한하면서도 Non-IID/다중 도메인 환경에서 학습 안정성과 

전역 일반화 성능 향상을 목표로 한다. 

Ⅱ. 본론  

2.1. Shift-Aware 프로토타입 특징 증류 기반 SFL 

그림 1. Label-local SFL 에서 도메인 시프트를 완화하기 위한 본 방법의 개요. 

위의 그림과 같이 서버 입력 분포의 통계적 변동을 완화하기 

위해, 클라이언트는 smashed feature ℎ를 서버로 보내기 전 

정규화 함수 𝑔(⋅)를 적용한다 [그림 1]. 

ℎ̃ = 𝑔(ℎ) 

여기서 𝑔(⋅) 는 ℓ2 -정규화이며, 도메인별 스케일/분산 차이를 

줄여 서버가 받는 입력의 분포 드리프트를 완화하는 것을 

목표로 한다. 정규화는 추가 통신 없이 클라이언트 로컬에서 

수행되므로 경량이며, 서버 측 모델 변경 없이도 적용 가능하다. 

정규화만으로는 클래스 의미 수준의 정렬이 충분하지 않을 수 

있으므로, 본 논문은 샘플 단위 특징 노출 없이 클래스 요약 

정보만을 교환하는 프로토타입 정렬을 도입한다. 클라이언트는 

정규화된 특징 ℎ̃에 대해 간단한 projection head 𝜙(⋅)를 적용해 

𝑧 = 𝜙(ℎ̃) 

를 얻고, 클래스별 로컬 프로토타입을 다음과 같이 계산한다. 

𝑝𝑘,𝑐 =
1

∣ 𝐷𝑘,𝑐 ∣
∑ 𝑧,

(𝑥,𝑦)∈𝐷𝑘,𝑐

𝑐 ∈ 𝒞 



 

 

그림 X. PACS LODO(BN=train)에서 도메인별 라운드-테스트 정확도(%) 곡선. 

𝐷𝑘,𝑐는 라운드 𝑡에서 클라이언트 𝑘의 클래스 𝑐샘플 집합이며, 

클라이언트는 라운드마다 {(𝑝𝑘,𝑐
𝑡 , 𝑛𝑘,𝑐

𝑡 )}를 서버로 전송한다(𝑛𝑘,𝑐
𝑡 =∣

𝐷𝑘,𝑐
𝑡 ∣ ). 여기서 {(𝑝𝑘,𝑐

𝑡 , 𝑛𝑘,𝑐
𝑡 )}는 클라이언트 𝑘가 관측한 클래스 

집합 𝒞𝑘
𝑡 = {𝑐  ∣  𝑛𝑘,𝑐

𝑡 > 0}에 대해 구성한 클래스 요약 메시지이며, 

𝑝𝑘,𝑐
𝑡 ∈ ℝ𝑑는 클래스 𝑐의 로컬 프로토타입(해당 클래스 샘플들의 

𝑧 평균), 𝑛𝑘,𝑐
𝑡 ∈ ℕ 는 그 샘플 수이다. 즉 서버로 전송되는 

메시지는 𝑀𝑘
𝑡 = {(𝑝𝑘,𝑐

𝑡 , 𝑛𝑘,𝑐
𝑡 )}𝑐∈𝒞𝑘𝑡이다. 서버는 이를 집계하여 전역 

프로토타입 𝑃𝑐를 업데이트한다. 

𝑝̄𝑐 =
∑ 𝑛𝑘,𝑐𝑘

𝑝𝑘,𝑐

∑ 𝑛𝑘,𝑐𝑘

, 𝑃𝑐 ← (1 − 𝛽)𝑃𝑐 + 𝛽𝑝̄𝑐 . 

이후 서버는 {𝑃𝑐}를 클라이언트에 배포하며, 클라이언트는 각 

샘플의 표현 𝑧 가 정답 클래스의 전역 프로토타입 𝑃𝑦 에 

가까워지도록 distillation 손실을 추가한다. 

𝐿proto = 𝔼(𝑥,𝑦)∼𝐷𝑘
[𝑑(𝑧,sg(𝑃𝑦))] 

여기서 𝑑(⋅,⋅) 는 ℓ2  또는 코사인 거리, sg(⋅) 는 stop-

gradient 이다. 이 과정은 서버가 라벨을 보지 못해도 

클라이언트 로컬 라벨을 통해 클래스 조건부 정렬을 유도할 수 

있으며, 추가 통신은 클래스 수 ∣ 𝒞 ∣에 비례하는 프로토타입만 

전송하므로 샘플 특징 공유 대비 노출과 비용을 크게 줄인다. 

전역 프로토타입은 다양한 도메인의 평균적 표현을 

반영하므로, 도메인 차이가 큰 클라이언트가 이를 과도하게 

추종할 경우 성능 저하(negative transfer)가 발생할 수 있다. 

이를 완화하기 위해 클라이언트 𝑘는 로컬–전역 프로토타입 간 

거리로 shift 수준을 추정한다. 

𝑑𝑘 =
1

∣ 𝒞𝑘 ∣
∑ 𝑑(

𝑐∈𝒞𝑘

𝑝𝑘,𝑐 , 𝑃𝑐) 

𝒞𝑘는 클라이언트 𝑘가 관측한 클래스 집합이고 증류 강도 𝜆𝑘를 

𝑑𝑘의 함수로 적응적으로 조절한다. 예를 들어, 

𝜆𝑘 = 𝜆0exp⁡(−𝛼𝑑𝑘) 

로 두면 shift 가 클수록 증류를 약화하여 로컬 도메인에 필요한 

표현 유지와 전역 정렬 간 균형을 맞출 수 있다. 

클라이언트 𝑘의 최종 학습 목표는 다음과 같다. 

𝐿 = 𝐿task + 𝜆𝑘𝐿proto. 

𝐿task는 label-local supervised loss(e.g. cross-entropy)이며, 

𝐿proto는 클래스 조건부 표현 정렬을 유도한다. 

2.2. 실험 결과 

본 연구는 도메인 시프트 환경에서 제안 기법의 효과를 

검증하기 위해 PACS 데이터셋의 Leave-One-Domain-

Out(LODO) 프로토콜을 사용하였다. 네 개 

도메인(photo/art_painting/cartoon/sketch) 중 하나를 테스트 

도메인으로 고정하고, 나머지 세 도메인을 각각 하나의  

Test Domain Vanila Proto Ours 

Art Painting 75.49 74.80 76.42 

Cartoon 77.65 77.22 78.84 

Photo 91.50 91.92 90.60 

Sketch 71.37 72.00 75.08 

Avg. 79.00 78.99 80.24 

Worst 71.37 72.00 75.08 

표 1. PACS LODO(BN=train)에서 홀드아웃 도메인별 최고 정확도(%) 

비교(vanilla/proto/ours, seed=0). 

클라이언트로 구성하여 3-클라이언트 label-local SFL 을 

수행하였다. 백본은 ResNet-18 이며 PACS 실험에서는 

ImageNet pretrained 가중치를 사용하였다. 비교 대상은 정규화 

및 프로토 타입 증류를 사용하지 않은 기본 SFL 인 Vanila 와 

클래스 전역 프로토타입에 대한 특징 정렬만 적용한 Proto, 

마지막으로 우리가 제안한 기법인 Ours 로 이루어져있다. 

[그림 1]는 PACS LODO 환경(BN=train)에서 라운드에 따른 

홀드아웃 도메인 테스트 정확도 변화를 나타낸다. 연합학습 

특성상 정확도가 라운드별로 진동하는 경향이 있으나, 제안 

방법(Ours)은 대부분의 도메인에서 더 높은 성능 구간을 

형성한다. 도메인별 정량 비교는 다음 표 X 에서 상세히 

설명한다. [표 1]에서 제안 방법(Ours)은 Art_painting, Cartoon, 

Sketch 에서 Vanilla 및 Proto 대비 더 높은 정확도를 보였으며, 

특히 도메인 시프트가 큰 sketch 에서 Proto 대비 +3.08%p 

향상을 보였다. 반면 photo 에서는 Proto/Vanilla 가 소폭 

우세하였으나, 전체 평균 정확도는 Ours 가 80.24%로 가장 

높았다 또한 최악 도메인 기준(Worst-domain) 정확도 역시 

Ours 가 75.08 로 가장 높아 도메인 시프트 환경에서 강건성이 

향상됨을 확인하였다. 

Ⅲ. 결론  

본 논문에서는 label-local Split Federated Learning 환경에서 

도메인 시프트로 인한 성능 저하를 완화하기 위해, 정규화된 

smashed feature 와 클래스 전역 프로토타입 기반 특징 증류를 

결합하고, 클라이언트-전역 프로토타입 간 거리로 증류 강도를 

조절하는 shift-aware 학습 방법을 제안하였다. PACS LODO 

실험에서 제안 방법은 다수 도메인에서 기존 방법 대비 

정확도를 향상시키고, 특히 도메인 시프트가 큰 조건에서 

강건성을 개선함을 확인하였다. 
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