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요 약

본 논문은암 세포주에대한약물반응을정확하게 예측하기 위해 양방향 크로스 어텐션메커니즘을도입한모델을 제안한다. 제안
모델은 암 세포주 잠재 표현과 약물 잠재 표현 사이의 양방향 크로스 어텐션을 통해 두 데이터 간의 복잡한 상호작용을 학습하도록
설계되었다. 실험 결과, 제안 모델은 기존 모델 대비예측 성능과일반화 능력이 전반적으로 향상되었으며, 모든 평가 지표에서일관되
게 개선된 성능을 보였다.

Ⅰ. 서론

암치료를위한신약개발은중요한과제이지만, 새로운항암제를설계하

는과정은막대한비용이들고오랜시간이걸린다. 이러한문제를해결하기

위해약물재창출이신약개발의중요한전략으로주목받고있다. 약물재창

출이란 이미 시판되었거나 임상 단계에서 안정성이 검증된 약물을 새로운

질병의 치료제로 사용하는 방법이다. 최근에는 약물 재창출 후보를 효율적

으로 발굴하기 위해 딥러닝 기법을 활용한 약물 반응 예측 연구가 활발히

이루어지고 있다.

기존 연구 중 하나인 drug repurposing using multi-omics data

integration with autoencoders (DeepDRA) [1]는 암세포주데이터와약물

데이터를 활용한 오토인코더 기반 약물 반응 예측 모델을 제안하였다.

DeepDRA [1]는 오토인코더를통해세포주데이터와약물데이터의차원을

축소하여잠재표현을생성하고, 이를연접한뒤분류기에입력하여약물반

응을예측한다. 그러나두데이터를독립적으로처리한뒤단순연접하는방

식은 두 데이터 간의 관계를 충분히 반영하지 못한다는 한계가 존재한다.

이러한 한계를 해결하기 위해 본 논문에서는 양방향 크로스 어텐션

(bidirectional cross attention) 메커니즘을도입한모델을제안한다. 제안모

델은세포주잠재표현과약물잠재표현간의양방향크로스어텐션을통해

세포주와약물사이의상호작용을효과적으로학습하여예측성능을향상시

켰다. 실험결과, 제안모델은기존모델 [1]에 비해복잡도가증가하였으나,

신약개발전체과정에소요되는시간을고려할때모델학습시간은유의미

한 영향을 미치지 않는다. 또한 약물 반응 예측에서는 예측 정확도 향상이

중요한요소이므로본논문에서는성능향상의중요성을우선적으로고려하

였다.

Ⅱ. 본론

본논문에서는주요암데이터베이스인 GDSC [2], CTRP [3], CCLE [4]

에서수집한세포주및약물반응데이터를활용하여실험을진행하였다. 세

포주데이터는유전자발현 (gene expression), 돌연변이 (mutation), 복제수

변이 (copy number variation) 특징을포함하며, 약물반응데이터는각세

포주와약물쌍에대한반응값으로구성되어있다. 약물데이터는약물반

응 데이터에 포함된 각 약물의 simplified molecular input line entry

system (SMILES) 표현을 PubChem 데이터베이스에서 수집하고, RDKit

화학정보학라이브러리를통해분자기술자 (molecular descriptors)와 분자

지문 (molecular fingerprints)을추출하여구성하였다. 최종적으로데이터셋

은 세포주, 약물, 그리고 해당 쌍에 대한 약물 반응 값을 포함한다.

기존모델 [1]은세포주데이터를처리하는세포주오토인코더, 약물데이

터를 처리하는 약물 오토인코더, 그리고 약물 반응예측을위한 MLP 분류

기로 구성된다. 오토인코더는 인코더와 디코더로 구성되며, 인코더는 입력

데이터의 핵심적인 특징을 추출하여 잠재 표현을 생성한다. 디코더는 잠재

표현을원본데이터로재구성하며, 이과정에서재구성손실을계산한다. 인

코더를통해생성된세포주잠재표현과약물잠재표현은연접되어분류기

에입력되며, 분류기는약물에대한내성또는민감반응을예측한다. 이러한

구조에서세포주잠재표현과약물잠재표현이별도로학습된후연접되기

때문에두특징간의정보교환이충분히이루어지지않는다는한계가있다.

따라서본논문에서는양방향크로스어텐션메커니즘을도입하여한계를

해결하였다. 제안모델은세포주오토인코더와약물오토인코더를사용하여

잠재표현을생성한뒤, 두 잠재표현간의양방향크로스어텐션을수행한

다. 구체적으로, 세포주잠재표현을  , 약물 잠재표현을 라고할때, 세

포주를쿼리 (query)로, 약물을키 (key)와밸류 (value)로사용하는세포주-

약물 어텐션은 다음과 같이 정의된다.

 ′      
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 , (1)

여기서  
   

  
이며, 

는 세포주 표

현에대한학습가능한가중치행렬이고, 


는약물표현에대한학

습가능한가중치행렬이다. 또한 는키벡터의차원을나타낸다. 이를통

해세포주표현은약물의정보를반영하여업데이트된다. 반대로약물을 쿼

리로, 세포주를 키와 밸류로 사용하는 약물-세포주어텐션은다음과 같이

계산된다.
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 , (2)
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  
이며, 

는 약물 표

현에 대한 학습 가능한 가중치 행렬, 


는 세포주 표현에 대한 학

습가능한가중치행렬을나타낸다. 이 과정에서약물표현은세포주의정

보를 참조하여 업데이트된다.

어텐션 연산 후에는 트랜스포머 인코더 구조 [5]의 잔차 연결 (residual

connection), 정규화 (normalization), 피드포워드 (feed forward) 과정이

적용되어 깊고 안정적인학습이가능하다. 최종적으로분류기는 오토인코

더를 통해 생성된 세포주 잠재 표현과 약물 잠재 표현, 그리고 양방향 크

로스 어텐션을 통해 생성된 표현들을 연접하여 입력으로 받는다. 이를 통

해 모델은 원본 특징과 상호작용 특징을 모두 고려하여 더 정확한 약물

반응을 예측할 수 있다. 제안 모델의 구조는 그림 1에 나타나 있다.

그림 1. 제안하는 약물 반응 예측 모델 구조

오토인코더와 분류기를 동시에 학습하기 위해 손실 함수는 오토인코더

의 재구성 손실과 분류기의 예측 손실을 결합하여 정의하였다. 전체 손실

함수 은 세포주 오토인코더의 손실 _ , 약물 오토인코더의 손실

_ , 분류기 손실 의 합으로 구성된다. 약물 오토인코더와 세포

주 오토인코더의 손실 함수로는 평균 제곱 오차 (mean squared error,

MSE)를 사용하였고, 분류기의 손실 함수로는 이진 교차 엔트로피

(binary cross entropy, BCE)를 사용하였다.

 __ . (3)

모델의 성능과 일반화 능력을 평가하기 위해 두 가지 실험을 진행하였

으며, 성능 평가 지표로는 Accuracy, Precision, Recall, F1-score, AUC,

AUPRC를 사용하였다. 첫 번째 실험에서는 CTRP와 GDSC 데이터셋을

결합하여 학습 및 테스트데이터로 사용하고, 5-fold 교차 검증을 통해 모

델의예측성능을평가하였다. 실험 결과는표 1에 나타나있다. 제안 모델

은 Precision을 제외한 모든 평가 지표(Accuracy, Recall, F1-score,

AUC, AUPRC)에서 기존 모델 [1] 대비 성능 향상을 보였다.

표 1. CTRP+GDSC 데이터셋에서의 5-fold 교차 검증 결과

기존 모델 [1] 제안 모델
Accuracy 0.953 0.956
Precision 0.945 0.939
Recall 0.96 0.969
F1-score 0.952 0.954
AUC 0.992 0.993
AUPRC 0.992 0.993

두 번째 실험은 CTRP와 GDSC를 결합한 데이터셋으로 모델을 학습시

키고, 학습에사용하지 않은데이터셋인 CCLE로테스트하는 교차데이터

셋실험을수행하였다. 실험 결과는표 2에나타나있다. 제안 모델은모든

평가 지표에서 개선된 결과를 보였으며, 특히 기존 모델 [1] 대비 AUC가

3.06%, AUPRC가 2.93% 향상되어 우수한 일반화 능력을 보였다.

표 2. CTRP+GDSC 데이터셋으로 학습 후

CCLE 데이터셋으로 테스트한 결과

기존 모델 [1] 제안 모델
Accuracy 0.804 0.829
Precision 0.832 0.842
Recall 0.823 0.850
F1-score 0.823 0.846
AUC 0.883 0.910
AUPRC 0.887 0.913

Ⅲ. 결론

본 논문에서는 암 세포주와 약물 간의 관계를 효과적으로 학습하기 위

해양방향크로스어텐션을적용한약물반응예측모델을제안하였다. 제

안 모델은 5-fold 교차 검증 실험에서 기존 모델 [1] 대비 대부분의 평가

지표에서 향상된 성능을 보였으며, 특히 학습에 사용하지 않은 데이터셋

을 이용한 교차 데이터셋 실험에서 우수한 성능을 달성하며 강력한 일반

화 능력을 입증하였다. 본 연구 결과는 암 세포주에 대한 정확한 약물 반

응 예측을 제공함으로써 약물의 새로운 치료 가능성을 탐색하고, 약물 재

창출 연구에 크게 기여할 것으로 기대된다.
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