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요 약

본 논문에서는 저전력 통신 환경을 위한이진신경망(binary neural network, BNN) 기반의 BNN 디코더(BNN decoder)를 제안한
다. 제안하는 디코더에는 이진화로 인한 성능 저하 문제를 해결하기 위해 이진 포컬 손실(binary focal loss)과 패리티 일관성 손실
(parity consistency loss)을 적용하고, 이중 소프트 임베더(double soft embedder) 구조를 도입하였다. 실험 결과 Hamming(15,11) 코
드 기준으로 Classical hard-decision(HD) Decoder 대비 블록 오류율(block error rate, BLER)이 최대 71% 감소함을 확인하였다.

Ⅰ. 서 론

차세대통신시스템은 초저지연과 저전력을핵심적으로요구한다. 이에

따라 기존 알고리즘의 병렬 처리 이점을 유지하면서도 디코딩 성능을 유

의미하게개선할수있는딥러닝기반오류정정부호디코딩기술의중요

성이 커지고 있다 [1]. 하지만 딥러닝은 대부분 실수형 연산에 기반하기

때문에 전력 소모와 메모리 사용량이 크다는 한계가 있다 [2]. 이에 대한

대안으로 가중치와 연산을 1비트로 제한하여 메모리와 연산 복잡도를 줄

이는 이진 신경망(binary neural network, BNN)이 제안되고 있다 [2, 3].

하지만 이진 신경망은 내부 가중치와 연산의 완전한 이진화로 인해 모델

의 표현력이 제한되기 때문에, 코드의 대수적 구조에 기반한 Classical

hard-decision(HD) Decoder의 성능 수준에 도달하는 데 한계가 있다.

본 논문에서는 이러한 문제를 해결하기 위해 다음 두 가지를 제안한다.

첫째, 제한된표현력내에서도모델이코드의대수적성질을학습할수있

도록 이진 포컬 손실(binary focal loss) [4]과 패리티 일관성 손실(parity

consistency loss)을 결합한 BNN 디코더(BNN decoder)를 제안한다. 둘

째, 실수형 채널 출력값을 사용하는 연속 입력 환경에서 급격한 이진화로

인한 정보 손실을 방지하기 위해 입력 처리부인 임베더(embedder)를 이

중화한 이중 소프트 임베더(double soft embedder) 구조를 제안한다.

실험 결과, 제안하는 BNN Decoder는 이진 입력조건에서 Classical HD

Decoder와 동등한 수준의 블록 오류율(block error rate, BLER) 성능을

달성하였다. 나아가 연속 입력 환경에서는 이중 소프트 임베더 구조를 통

해 Hamming(15, 11) 코드 기준 BLER를 약 71% 감소시킴으로써, 이진

화된 신경망 구조가 연속 정보를 효과적으로 활용하여 디코딩 성능을 향

상시킬 수 있음을 확인하였다.

Ⅱ. 본 론

송신메시지벡터를  , 해밍 인코딩함수를 · , 이진 위상편이변조

(binary phase shift keying, BPSK) 함수를 ·라 정의하면, 송신된 코

드워드 는   이며, 변조된 신호 는   가 된다. 채널을

통과하며 가산 백색 가우시안 잡음(additive white Gaussian noise,

AWGN) 이 더해진 최종 수신 신호 는 식 (1)과 같이 정의된다.

본 논문에서는 이러한통신 환경에서이진 입력만을사용하는 Classical

HD Decoder와 동등한 성능을 달성하는 BNN Decoder를 제안한다. 제안

하는 디코더는 이진화된 가중치와 활성화 함수로 인한 학습 어려움을 완

화하기 위해 직통 추정기(straight-through estimator, STE) [3], XNOR

스케일링(XNOR scaling) [2], 확률적 이진화(stochastic binarization) [3],

드롭커넥트(DropConnect) [6]를 적용하였다. 또한, 높은 신호 대 잡음비

(signal-to-noise ratio, SNR) 환경에서는 오류 발생 확률이 낮아 희소한

오류패턴이충분히학습되지않는문제가있다. 이를 해결하기위해이진

   (1)

그림 1. 하드 임베더 및 소프트 임베더 기반 디코더에 공통으로 적용되는 BNN Decoder의 전체 구조



포컬 손실 [4]을 도입하여 오류에 대한 학습 비중을 강화하였다. 또한, 디

코더가 해밍 코드의 구조를 학습할 수 있도록 패리티 일관성 손실을 식

(2)와 같이 정의하여 전체 손실 함수에 반영하였다.

여기서 는 번째 비트의 로짓(logit), 는 번째 패리티 검사에 포함된

비트의 인덱스 집합, 은 패리티 검사식의 총 개수를 의미한다. 이는 기

존의 신드롬 기반 디코딩에서 사용된 패리티 제약 조건을, 신경망 학습이

가능하도록 미분 가능한 손실 함수 형태로 재구성한 것이다.

그림 1은 하드임베더(hard embedder)와 소프트임베더(soft embedder)

기반 디코더에 공통으로 적용되는 BNN Decoder의 아키텍처를 나타낸다.

제안하는 모든 BNN 기반 디코더는 입력으로 실수형 수신 신호 y를 사용

하며, 임베더 블록에서의 이진화에 방식에 따라 하드 임베더와 소프트 임

베더 구조로 구분된다. 기본 BNN Decoder는 임베더의 첫 번째 계층에서

입력을즉시 이진화하는하드임베더구조를사용한다. 반면, 소프트 임베

더는 연속 표현을 유지한 상태에서 특징을 추출한 후 이진화를 수행하며,

소프트 임베더 블록의 개수에 따라 단일 소프트 임베더(single soft

embedder)와 이중 소프트 임베더로 구분한다.

디코더의 입력은 신드롬 기반 접근법(syndrome-based approach) [5]

에 따라, 수신 신호 로부터 얻은 이진 비트(±)와 패리티 검사 행렬과

의 연산을 통해 얻은 이진 신드롬(±)을 결합하여 구성된다. 디코더는

입력 신호를 고차원 이진 특징으로 변환하는 임베더, 오류 패턴을 보정하

는리파이너(refiner), 그리고 최종메시지와 코드워드를각각 예측하는예

측단으로 구성된다. 이때, 네트워크 전반의 활성화 함수로는 출력값을

[-1, 1] 범위로 제한하는 Hardtanh 활성화 함수를 사용하여 부호 함수

(sign function)와의 동작일관성을 확보하였다. 예측단은두개의 분기구

조로 이루어져 각각 메시지 와 코드워드 를 예측한다.

평가단계에서는예측 로짓에시그모이드(sigmoid) 함수를적용한값을

신뢰도로 정의하고, 두 출력 중 신뢰도가 더 높은 결과를 선택한다. 예측

된 코드워드가 패리티 검사를 만족하지 못하는 경우에는 신드롬 기반 단

일 비트 오류 정정을수행하여디코딩 결과가유효한 코드 공간을만족하

도록 보정한다. 또한 추론 과정의 불확실성을 완화하기 위해 몬테카를로

드롭아웃(MC-Dropout) [7] 기반 앙상블 추론을 적용하였다.

실험 결과, 제안하는 BNN Decoder는 이진 입력만을 사용하는 조건에

서 모든 신호 대 잡음비에 대해 Classical HD Decoder와 동등한 수준의

BLER 성능을 달성하였으며, 이는 그림 2(a)에 제시하였다.

Classical HD Decoder의 성능 한계를극복하기위한연속입력기반 구

조 분석은 그림 2(b)에 제시되어 있으며, 단일 및 이중 소프트 임베더 구

조의성능비교를통해이를확인하였다. 단일소프트임베더구조는연속

입력을 처리하는 소프트 임베더 계층이 하나로 구성되어 있어 유의미한

특징추출에제한적이다. 이를 보완하기위해소프트임베더를두개의계

층으로 확장한 이중 소프트 임베더 구조를 도입하였다. 이중 소프트 임베

더에서는 두 단계의 특징추출을 통해 급격한이진화로인한정보손실을

완화한다. 또한, 입력 단계에서의정보 보존을 위해 소프트 임베더 계층에

서는 드롭아웃을제거하고, 과적합을 방지하기 위해서리파이너계층에서

만 드롭아웃을 적용하는 방법을 사용하였다.

실험 결과, Hamming(15, 11) 코드에서 SNR 7.0 dB 기준으로 연속 입

력을 단일 소프트임베더구조로 처리했을때의 BLER은 ×로,

Classical HD Decoder의 BLER인 × 대비 약 33% 감소하였

다. 나아가 이중 소프트 임베더 구조를 적용한 경우에는 동일 조건에서의

BLER이 ×로, Classical HD Decoder 대비 약 71%의 상대적

성능 개선을 달성하였다.

Ⅲ. 결 론

본논문에서는이진신경망기반해밍코드디코더의 성능 저하를 극복

하기 위한학습전략과디코더구조를제안하였다. Classical HD Decoder

와 비교하였을때, 제안하는 BNN Decoder는 이진입력조건에서기준디

코더와 동등한 BLER 성능 수준을 달성하였으며, 이중 소프트 임베더 구

조를 적용한 경우에는 BLER를 약 71% 감소시켰다. 이러한 결과는 추가

적인 복잡한 디코딩 알고리즘의 변경 없이도 임베더의 구조적 심층화와

초기 연속 입력 정보 보존만을 통해 이진신경망이 연속정보를 효과적으

로활용할수있음을시사한다. 나아가본연구는차세대통신시스템에서

딥러닝기반채널코딩에 이진 신경망을 적용하기 위한 기초 연구로서 의

의를 가진다.
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그림 2. 기존HD디코더와제안한BNN기반디코더의BLER 성능비교:

(a) 하드 임베더, (b) 소프트 임베더.


