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[Z¥ 1] Qualitative comparison of structural (raw)
depth predictions under different loss configurations.

DEEEE

[Z¥ 2] Qualitative comparison of metric depth
predictions under different loss configurations.

From left to right: (a) full loss configuration, (b)
without SiLog loss, (¢c) without smooth loss, (d) without
consistency loss, (e¢) without smooth/consistency loss.
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Table 1: Ablation results of loss configurations

Configuration AbsRel | RMSE |
All losses 0.0809 0.1720
No SiLog 0.0820 0.1732
No Smooth 0.0794 0.1700
No Consistency 0.0816 0.2114
No Smooth & Consistency 0.0895 0.2328

[3£ 1] Quantitative depth estimation performance
under different loss configurations
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