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요 약  

 
 6G 비지상 네트워크(NTN)의 핵심 인프라인 저궤도(LEO) 위성 통신에서, 정확한 채널 상태 정보(CSI)의 획득은 시스템 

성능을 결정짓는 필수 요소이다. LEO 시스템은 위성의 초고속 궤도 운행으로 인해 지상 단말이 고정된 경우에도 급격한 

도플러 천이와 심각한 채널 노화(Channel Aging) 현상을 야기한다. 본 연구에서는 이러한 LEO 망의 채널 노화 문제 

해결을 위해 RNN 및 LSTM 기반 시계열 채널 예측 모델을 제안하고 그 유효성을 검증한다. 특히, 본 연구는 단순한 

예측 모델의 적용을 넘어, 시스템 파라미터 변화가 채널 예측성에 미치는 영향을 다각도로 분석하였다. 분석 결과, 반송파 

주파수의 증가에 따른 도플러 천이 심화와 위성 고도의 상승으로 인한 경로 손실 및 왕복 지연 시간(RTT)증가가 채널 

예측 정확도를 저하시키는 주요 요인임을 정량적으로 규명하였다. 본 연구의 결과는 시스템 파라미터와 채널 노화 간의 

상관관계를 규명함으로써, 차세대 고신뢰성 위성 통신 시스템 설계를 위한 핵심 가이드라인을 제시한다. 

 

Ⅰ. 서 론  

최근 6G 비지상 네트워크의 핵심 요소인 저궤도 위성 

통신은 차세대 기술로 주목받고 있다[1]. 저궤도 

시스템은 약 500~2,000km 의 저고도에서 운용되며, 

지상망과 달리 위성이 약 7.6 km/s 의 초고속으로 

이동한다. 이로 인해 지상 단말이 고정된 상태에서도 

급격한 도플러 천이와 채널 변화가 발생한다.  

이러한 높은 동적 특성은 위성과 단말 간의 긴 물리적 

거리에 의한 왕복 지연 시간과 결합하여 채널 노화 

문제를 야기한다. 즉, 단말이 추정한 채널 상태 정보가 

위성에 도달하여 실제 빔포밍에 적용될 시점에는 이미 

유효성을 상실한다. 이는 시스템 성능의 심각한 병목 

현상을 초래한다. 기존의 통계적 모델링은 저궤도 환경 

특유의 복잡한 비선형 시변 특성을 실시간으로 추적하는 

데 한계가 있다.  

본 연구에서는 이러한 한계를 극복하기 위해 딥러닝 

모델을 활용한 데이터 기반 채널 예측 기법을 제안한다. 

급격히 변하는 저궤도 채널의 패턴을 학습하고 반송파 

주파수 및 위성 고도 등 주요 파라미터가 예측 정확도에 

미치는 영향을 규명한다. 향후 저궤도 위성 네트워크 

최적화를 위한 설계 가이드라인을 제공한다. 

 

 

Ⅱ. 저궤도 위성 채널의 시변 특성과 노화 문제 

1. 시스템 모델 설계 

본 연구에서는 3GPP TR 38.811 표준 규격을 기반으로 

저궤도 위성 시스템의 파라미터를 설정하였으며, 매트랩 

시뮬레이션에 사용된 주요 파라미터는 표 1 과 같다[2]. 

다중 빔을 방사하는 저궤도 위성의 하향 링크 채널 

모델을 고려한다. 위성이 다중 빔을 통해 지상 단말로 

신호를 전송할 때, 수신 신호 벡터 y(t)는 다음과 같다. 
 

𝑦(𝑡) = 𝐻(𝑡)𝑥(𝑡) + 𝑛(𝑡) (1) 
 

여기서 H(t)는 다중 안테나 및 다중 빔 환경을 반영한 

채널 행렬이며, x(t) 는 위성에서 송신하는 전송 신호 

벡터, n(t) 는 가산성 백색 가우시안 잡음를 의미한다. 

하향 링크 채널 계수는 장거리 전파에 따른 경로 손실과 

다중 경로에 의한 소규모 페이딩의 결합으로 구성된다. 
 

2. 채널 노화 문제 
 

 
그림 1. CSI 추정 시점과 실제 적용 시점 사이의 시간적 

격차로 인한 채널 정보의 불일치 현상 
 

저궤도 위성 통신에서 채널 노화 문제가 발생하는 

원인은 위성의 고속 이동에 따른 극심한 도플러 천이와 

긴 전파 거리에 의한 왕복 지연 시간의 상호작용에 있다. 

표 1. 시스템 파라미터 

Parameters Values 

Transmit antennas 64 

scattering paths 4 

Rician factor 10 dB 

Carrier Frequency 2 GHz 

LEO satellite altitude 600 km 



 

본 연구에서 고려하는 다중 빔 하향 링크 시스템의 

경우, 위성이 이동하며 발생하는 높은 도플러 주파수는 

채널의 위상을 매우 빠르게 회전시킨다. 이때 최대 

도플러 주파수는 다음과 같이 정의된다. 

 

fd =
(v ⋅ fc)

𝑐
(2) 

 

이는 결과적으로 채널 일관성 시간을 극도로 

단축시키는 결과를 초래하며, 채널 일관성 시간과 최대 

도플러 주파수 사이의 관계는 다음과 같이 정의된다. 
 

Tc ≈
0.423

fd
(3) 

 

결과적으로 반송파 주파수가 상승할수록 최대 도플러 

주파수가 증가하고 채널 일관성 시간은 감소한다. 저궤도 

위성과 지상 단말 사이의 긴 물리적 거리로 인해 

발생하는 왕복 지연 시간이 단축된 채널 일관성 시간에 

비해 길다. 그림 1 에서 단말이 과거 시점에서 추정한 

채널 상태 정보가 피드백 링크를 통해 위성에 도달하여 

실제 빔포밍에 적용되는 시점 사이에는 시차가 발생한다. 

실제 채널은 이미 채널 일관성 시간을 초과하여 

변화하므로, 위성에 도달한 채널 상태 정보는 초기 

추정치와 낮은 상관관계를 갖게 된다. 이러한 현상은 

다중 안테나 시스템에서 정확한 빔 형성을 방해하여 빔 

간 간섭을 유발한다. 즉, 전체 시스템의 전송 효율을 

저해하는 핵심 병목 요인이 된다. 
 

Ⅲ. 딥러닝 기반 채널 예측 기법 

본 연구에서는 저궤도 위성 통신의 고유한 채널 

특성을 반영하여, 기존 예측 방식의 한계를 극복하기 

위한 딥러닝 기반의 분석 접근법을 제안한다.  

전통적인 통계적 모델링이나 자기회귀 모델은 채널의 

시변 특성이 비교적 예측 가능하거나 일정한 통계적 

규칙을 따른다고 가정하는 경우가 많으나, 저궤도 위성 

통신 특유의 고속 시변성 과 높은 동적성 인한 복잡한 

채널 변화를 정확히 모델링 하는 데에는 한계가 있다[3]. 

따라서 본 연구에서는 데이터에 내재된 복잡한 시계열 

패턴을 효과적으로 추출하기 위해, 딥러닝 모델(RNN[4], 

LSTM[5])을 활용한 데이터 기반 접근 방식을 채택한다. 
 

Ⅳ. 성능 평가 및 주파수 영향도 분석 

  
그림 2. 주파수에 증가에 따른 채널 예측 모델의 NMSE 

성능 평가 그래프 
 

반송파 주파수가 2 GHz(S-band)에서 20 GHz(Ka- 

band)로 상승함에 따라, 이동통신 채널의 동적 특성은 

급격한 변화를 맞이한다. 식 2 를 보면 도플러 천이의 

크기는 반송파 주파수에 직접적으로 비례하여 나타난다. 

따라서 주파수의 상승은 채널 노화 현상을 가속화하고 

예측 데이터의 복잡성을 높이는 요인으로 작용한다. 

 

 
그림 3. 저궤도 위성 고도에 따른 채널 예측 모델의 

NMSE 성능 평가 그래프 
 

 

위성 고도가 600km 에서 1,400km 로 높아질수록 전파 

거리 증가에 따른 자유 공간 경로 손실과 전파 지연이 

심화되어 채널 간 상관관계가 약화된다. 이러한 환경 

변화는 수신 신호와 예측 모델의 정확도를 제한하는 

주요 원인이 된다. 
 

Ⅴ. 결론  

본 연구는 저궤도 위성 시스템에서 채널 노화 문제를 

해결하기 위한 딥러닝 기반 예측 모델의 효용성을 

분석하였다. 반송파 주파수가 상승함에 따라 도플러 

천이가 심화되어 채널의 위상 변동이 급격해짐으로써 

예측 정확도가 저하되는 것을 확인하였다. 또한 위성 

고도가 경로 손실에 의한 신호 대 잡음비 저하와 왕복 

지연 시간의 증가가 복합적으로 작용하여 예측 모델의 

성능을 제한하는 물리적 요인이 됨을 규명하였다. 이러한 

결과는 향후 위성 통신 시스템 설계 시 고도와 주파수에 

따른 최적의 예측 모델 선정 지침으로 활용될 수 있다.  
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