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요 약  

 
본 논문은 로봇 조작을 위한 정책 학습에서 Flow Matching 과 확산 정책의 성능을 비교 분석한다. 확산 정책은 확산 

모델을 기반으로 우수한 행동 복제 성능을 보여주었으나, 학습 효율성과 추론 속도 측면에서 개선의 여지가 있다. Flow 

Matching 은 확산 모델의 대안으로서, 연속적인 흐름 경로를 통해 노이즈에서 데이터로의 변환을 학습한다. 본 연구는 세 

가지 실제 로봇 조작 과제에서 두 방법을 실험적으로 비교한다. 실험 결과, Flow Matching 정책은 더 빠른 학습 및 추론 

속도로, 확산 정책과 유사한 성공률을 달성하였다. 실시간 로봇 제어가 요구되는 환경에서 Flow Matching 의 빠른 샘플링 
속도는 실용적인 이점을 제공한다. 본 연구는 Flow Matching 이 로봇 정책 학습을 위한 효율적이고 실용적인 대안임을 

실증한다. 

 

Ⅰ. 서 론  

최근 확산 모델 (Diffusion Models)은 이미지, 비디오 

생성뿐만 아니라 로봇 정책의 액션 생성에서도 유망한 

결과를 보여주었다. 확산 정책 (Diffusion Policy)[1]은 

U-Net 기반 또는 Transformer 기반 아키텍처를 
사용하여 순수 노이즈에서 시작해 여러번의 역확산 

과정을 거쳐 깨끗한 액션을 생성한다. 이 방법은 행동 

복제(Behavior Cloning)에서 우수한 성능을 입증했으나, 

학습 효율성과 추론 속도 측면에서 개선의 여지가 있다. 

Flow Matching[2]은 확산 모델의 대안으로 등장한 생성 

모델링 기법이다. Flow Matching 은 향상된 학습 

안정성과 더 빠른 추론 속도를 제공하면서도 유사한 
표현력을 유지한다. 최근 로봇 학습 분야에서 pi0[3]와 

같은 모델들이 Flow Matching 을 채택하면서 그 효과가 

주목받고 있다. 

본 연구의 목적은 로봇 조작을 위한 정책 학습에서 Flow 

Matching 과 확산 정책의 성능을 비교 분석하는 것이다. 

특히 학습 효율성, 추론 속도, 실제 로봇 조작 

과제에서의 성능을 중심으로 두 방법을 실증적으로 
비교한다. 

Ⅱ. 본론  

Flow Matching 은 노이즈에서 데이터로의 연속적인 
경로를 학습한다. 샘플 x^(τ )는 흐름 시간 τ  ∈ [0, 

1]에서 노이즈(τ  = 0)에서 데이터(τ  = 1)로 변환된다. 

가우시안 조건부 분포를 사용하는 일반적인 공식은 

다음과 같다: 

x^(τ ) = τ x^(1) + (1 −  τ )x^(0), x^(0) ~ N(0, I) 

여기서 x^(0)는 표준 정규분포에서 샘플링한 

노이즈이고, x^(1)는 목표 데이터 분포에서 온 샘플이다. 
조건부 벡터장 u_τ (x^(τ )|x^(1))는 흐름 시간 τ 에 

대한 x^(τ )의 변화율을 나타낸다: 

d/dτ  x^(τ ) = u_τ (x^(τ )|x^(1)) 

조건부 Flow Matching 은 신경망 v_θ (x^(τ ), 

τ |x^(1))를 학습하여 조건부 벡터장을 근사화하는 지도 

학습 프레임워크이다. 학습 목적 함수는 다음과 같다: 

L_CFM(θ ) = E[||u_τ (x^(τ )|x^(1)) −  v_θ (x^(τ ), 

τ |x^(1))||^2] 

선형 보간의 경우, 벡터장의 목표값은 u_τ  = x^(1) −  

x^(0)로 간단하게 계산된다. 

확산 정책은 DDPM 을 기반으로 한다. 순수 노이즈 
a_t^(K)에서 시작하여 K번의 역확산 스텝을 통해 

점진적으로 노이즈를 제거하며 액션 a_t^(0)를 생성한다. 

각 스텝에서 노이즈 예측 네트워크 ε _θ는 현재 노이즈 

레벨과 관측값 o_t 를 조건으로 받아 노이즈를 추정한다. 

두 방법의 주요 차이점은 다음과 같다: 

학습 효율성: Flow Matching 은 일반적으로 더 적은 

에폭으로 수렴한다. 확산 모델은 다양한 노이즈 

레벨에서의 노이즈 예측을 학습해야 하는 반면, Flow 



 

Matching 은 직접적인 벡터장 회귀를 수행하여 학습이 

더 안정적이다. 

추론 속도: Flow Matching 은 연속적인 흐름 경로를 

통해 더 적은 스텝으로 샘플링이 가능하다. DDPM 이 

일반적으로 수십에서 수백 번의 반복을 요구하는 반면, 
Flow Matching 은 10-20 스텝으로도 고품질 샘플을 

생성할 수 있다. 

생성 품질: 두 방법 모두 유사한 수준의 표현력을 
가지며, 최종 성능은 비슷한 수준이다. 다만 Flow 

Matching 이 더 적은 샘플링 스텝에서도 안정적인 

품질을 유지한다. 

실제 로봇 조작 과제에서 두 방법을 비교하기 위해 

실험적 검증을 수행한다. 비교 대상은 다음과 같다: 

l DP-C: U-Net 기반 확산 정책 (DDPM) 

l DP-T: Transformer 기반 확산 정책 (DDPM) 

l FMP: Flow Matching 정책 (U-Net 기반) 

세 가지 실제 로봇 조작 과제에서 평가를 수행한다: 

l Close Drawer (CD): 서랍을 완전히 닫는 

과제로, 제약된 움직임 동역학과 

비파지(non-prehensile) 조작 이해가 

필요하다. 

l Towel Folding (TF): 수건의 특정 모서리를 

잡아 반으로 접는 변형 가능한 물체 조작 

과제이다. 

l Cup Arrangement (CA): 누워있는 컵을 

테두리를 잡아 접시 위에 똑바로 세우는 
과제로, 정밀한 조작과 적절한 방향 제어가 

요구된다. 

각 과제당 50-100 개의 전문가 시연 에피소드를 

수집하여 학습 데이터로 사용한다. 모든 방법은 동일한 
데이터셋과 학습 설정으로 훈련되며, 각 과제당 10 회 

시도를 통해 성공률을 측정한다.  

 

방법 평균 
성공률 

학습시 
샘플 스텝 

추론시 
샘플 스텝 

DP-C 0.567 100 16 

DP-T 0.6 100 16 

FMP 0.6 10 10 
 

실험 결과, Flow Matching 정책은 평균적으로 확산 

정책과 유사한 성능을 보인다. 반면 Flow Matching 
정책은 학습과 추론 두 경우 모두 훨씬 적은 생성과정을 

가진다. 이는 실시간 로봇 제어에서 중요한 이점이다. 

 

 

 

Ⅲ. 결론  

본 연구는 로봇 정책 학습에서 Flow Matching 이 확산 
정책의 효율적인 대안임을 실증한다. Flow Matching 은 

다음과 같은 장점을 제공한다: 

첫째, 향상된 학습 효율성으로 더 적은 학습 시간으로 
유사한 성능에 도달한다. 둘째, 빠른 추론 속도로 실시간 

로봇 제어에 더 적합하다. 셋째, 안정적인 학습 과정으로 

하이퍼파라미터 튜닝의 부담이 적다. 

특히 로봇 조작과 같이 실시간성이 중요한 응용에서 

Flow Matching 의 빠른 샘플링 속도는 실용적인 이점을 

제공한다. 또한 학습 안정성이 높아 다양한 과제와 

환경에 쉽게 적용할 수 있다. 

향후 연구 방향으로는 Flow Matching 을 대규모 

데이터셋과 멀티태스크 학습에 적용하여 일반화 능력을 

더욱 향상시키는 것을 고려할 수 있다. 또한 다양한 
Flow Matching 변형 (Rectified Flow, Optimal 

Transport Flow)을 로봇 학습에 적용하여 추가적인 성능 

개선을 탐구할 가치가 있다..  
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