

Near-Field Sensing Range and Angle Using RSS-based Method

Huan Zhang, Hu Jin

Hanyang Univ.

{cola1999, hjin}@hanyang.ac.kr

RSS 기반 방법을 이용한 근거리장 거리 및 각도 센싱

장환, 김호
한양대학교

Abstract

Near-field integrated sensing and communication (ISAC) with extra-large arrays can enable high-resolution angle-range localization, but monostatic beam/focus scanning incurs high initial-access latency [1]. Exploiting projected-aperture non-uniform spherical-wave (PNUSW)-induced received signal strength (RSS) non-uniformity across the array [1], we estimate user range and bearing from per-element uplink RSS via maximum-likelihood (ML) fitting solved by particle swarm optimization (PSO) [2], avoiding exhaustive scanning and grid search.

I . Introduction

In the electromagnetic near field, wave propagation is no longer well captured by a simple spherical-wave assumption, because each array element experiences different path lengths and projected apertures under the PNUSW [1]. As a result, the uniform linear array (ULA) observes a distinctive per-element received power pattern. We exploit this property to localize a newly arrived user equipment (UE) during initial access using only the UE transmit power and the RSS profile across the base-station (BS) array—without requiring symbol knowledge or phase synchronization.

II . Method

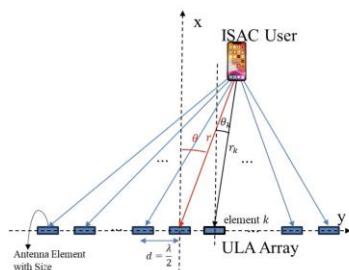


Figure System model.

In the near field, propagation follows the PNUSW model, so different antennas of a ULA receive different uplink power levels from the same user [1]. With a known channel model, the BS formulates a ML localization objective and uses PSO to search for the UE location without grid search.

III. Conclusion

Overall, the proposed PNUSW-driven RSS profiling enables scan-free, grid-free near-field user localization during initial access with low complexity.

ACKNOWLEDGMENT

This research was supported by Brain Pool program funded by the Ministry of Science and ICT through the National Research Foundation of Korea (RS2025-25456394).

REFERENCES

- [1] M. Cui, Z. Wu, Y. Lu, X. Wei, and L. Dai, "Near-Field MIMO Communications for 6G: Fundamentals, Challenges, Potentials, and Future Directions," *IEEE Commun. Mag.*, vol. 61, no. 1, pp. 40– 46, 2023 .
- [2] Z.-H. Zhan, J. Zhang, Y. Li, and H. S.-H. Chung, "Adaptive Particle Swarm Optimization," *IEEE Trans. Syst., Man, Cybern. B (Cybern.)*, vol. 39, no. 6, pp. 1362– 1381, 2009 .