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요 약  

 
본 연구는 레이더 포인트 클라우드와 같은 3 차원 좌표 기반 다객체 환경에서, 오프라인에서 학습된 

고정(global) GMM 의 distance–score 추론(E-step)만을 FPGA 로 가속하고 소프트웨어와 동등 조건에서 비교한다. 

공분산은 대각(diagonal)으로 가정하고, 각 포인트에 대해 Mahalanobis 거리 기반 score 를 계산한 뒤 argmax 로 

best_k 를 출력하는 커널을 Q16 고정소수점으로 구현하였다. 실험에서 Q16 은 float 대비 클러스터 선택 불일치율이 

0.4%로 낮았으며, 경량 커널에서는 AXI4-Lite 기반 순차 전송 오버헤드가 성능에 크게 영향을 주는 것을 확인하였다. 

 

 

Ⅰ. 서 론  

3D/4D 레이더는 프레임당 수천 개 포인트를 생성하므로 

객체 단위 클러스터링이 필수이며, GMM 은 분산/형상을 

반영하는 확률적 모델링으로 레이더 데이터에 적합하다

[1]. 그러나 EM/VB-GMM 의 반복 학습을 임베디드 

SoC에서 실시간으로 수행하는 것은 부담이 크고, 소프트

웨어적 기법(VB 기반 모델링 등)만으로는 프레임레이트

·자원 제약을 동시에 만족시키기 어렵다[2]. FPGA 에서 

EM 엔진을 직접 구현한 연구도 있으나 업데이트/제어가 

복잡해 SoC 관점에서 설계·자원 부담이 증가할 수 있

다[3]. 따라서 학습은 오프라인에서 수행하고, 온라인 단

계에서는 고정 파라미터를 갖는 추론 커널만 가속하는 

구조가 현실적이며, 본 연구는 이 설정에서 고정소수점 

양자화 및 PS–PL 인터페이스 오버헤드가 성능/정확도에 

미치는 영향을 동일 조건으로 비교한다.  

 

Ⅱ. 고정 GMM distance-score 커널 및 Q16 구현  

본 논문에서 사용하는 GMM 은 𝐷차원 특징 벡터 𝑥 ∈ ℝ஽

에 대해 𝐾개의 가우시안 컴포넌트로 구성되며, 하드웨어 

구현 복잡도를 줄이기 위해 공분산을 대각(diagonal)으

로 가정한다. 즉, Σ
௞

= diag(𝜎௞,ଵ
ଶ , … , 𝜎௞,஽

ଶ )로 두고 축별 분

산만을 저장한다. 고정(global) GMM 파라미터 

൫𝜇௞
, 𝜎௞

ଶ, 𝜋௞൯가 주어졌을 때, 입력 포인트 𝑥에 대한 컴포넌

트 𝑘의 Mahalanobis 거리 제곱과 score 는 다음과 같이 

정의된다. 
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score௞(𝑥) = 𝜋௞exp (−0.5ௗ𝑑௞
ଶ(𝑥)) 

엄밀한 posterior 계산에는 score 의 정규화가 필요하지

만, 본 논문의 목적은 “가장 가능성 높은 컴포넌트 선택”

이므로 best௞(𝑥) = arg max ௞ score௞(𝑥)를 최종 클러스터로 

사용한다. 결과적으로 제안 커널은 포인트당 𝐾개의 𝑑௞
ଶ와 

score 를 평가하고 argmax 로 best_k 를 출력하는 

distance–exp–score–argmax 구조로 정리된다. 

하드웨어 구현을 위해 입력 포인트와 파라미터 (𝜇, 𝜎ଶ, 𝜋)

를 16-bit signed Q16 으로 통일하고, 본 구현에서는 

FRAC_BITS=9(스케일 2ଽ = 512)로 float↔Q16 변환을 

수행한다(포맷/범위는 표 1). 커널 내부에서는 (𝑥−𝜇) 가 

signed 이므로 부호 연산을 유지한 상태에서 제곱·누산 

및 𝜋곱으로 인해 비트폭이 증가하는 구간은 확장 비트폭

으로 처리하고, 필요한 지점에서 FRAC_BITS 시프트로 

Q16 스케일을 정규화한다. 나눗셈은 결과도 Q16 스케일

을 유지하도록 분자를 FRAC_BITS 만큼 스케일 업한 정

수 나눗셈(restoring/shift-subtract)으로 구성하며, 최

종 출력은 포화(saturation) 정책으로 16-bit 범위에 안

전하게 매핑한다. 또한 exp (⋅)는 하드웨어 비용을 줄이기 

위해 LUT 기반 근사(필요 시 shift-add 결합)로 구현

하여 score 계산을 효율화하였다. 

 

Ⅲ. HW/SW co-design 및 제어 방식(압축)  

 그림 1 은 PC(MATLAB)에서의 오프라인 학습/양자화



 

와 ZCU104 보드에서의 런타임 추론을 분리한 HW/SW 

co-design 구조를 보여준다. PC 에서는 데이터 전처리 

및 global GMM 학습을 수행한 뒤, 학습된 (𝜇, 𝜎ଶ, 𝜋) 를 

Q16 으로 양자화하여 보드에서 사용 가능한 형태로 전달

한다. 보드에서는 PS(ARM, Vitis)가 DDR 에 적재된 

Q16 포인트/파라미터를 바탕으로 PL의 GMM IP를 구동

하고, 각 포인트의 클러스터 할당 결과(best_k, 

best_score)를 회수해 저장한다. 

PL 의 GMM IP 는 AXI4-Lite 인터페이스 계층과 Q16 

추론 커널 계층으로 구성된다. 인터페이스 계층은 PS 가 

레지스터 접근만으로 포인트 좌표와 클러스터 파라미터, 

제어 신호를 전달하고 결과를 읽을 수 있도록 하며, 커널

은 distance–exp–score–argmax 파이프라인으로 동작한

다. 포인트 좌표 (𝑥, 𝑦, 𝑧)는 포인트당 1 회 입력되고, 클러

스터 𝑘 의 ൫𝜇௞
, 𝜎௞

ଶ, 𝜋௞൯ 는 𝑘 = 0 ∼ 𝐾 − 1 순서로 입력된다. 

각 𝑘입력마다 𝑑௞
ଶ 와 score௞ 를 계산해 best_k/best_score

를 갱신하고, 마지막 클러스터 입력에서 결과를 확정

(out_valid)하여 PS 가 동기적으로 결과를 읽도록 한다. 

본 구조는 MATLAB 과 동일 입력/파라미터 조건에서 하

드웨어 구동을 가능하게 해 비교를 단순화하는 반면, 레

지스터 기반 순차 전송이 포함되어 경량 커널에서는 PS–
PL 트랜잭션 오버헤드가 전체 지연에 영향을 줄 수 있으

므로, 본 논문은 이를 end-to-end 관점에서 함께 평가

한다. 

 

그림 1: HW/SW 블록 다이어그램(PC 학습/양자화 ↔ 

ZCU104 추론) 

 

Ⅳ. 실험 결과 및 결론 

  

Method 
Total 

time(s) 

per-sample 

(µs) 

MATLAB–float 8.3605 8.3605 

MATLAB–Q16 8.4074 8.4074 

MATLAB–
float+copy 

13.7186 13.7186 

FPGA–Q16 17.6 17.6 

표 1. 실행 시간 비교 (distance-exp-score 커널, K=4, 

D=3) 

 

실험은 5000 프레임, 프레임당 객체 4 로 구성된 총 100
만 포인트 데이터셋을 대상으로 수행했으며, 입력 특징은 
[𝑥, 𝑦, 𝑧]만 사용하였다. 공정한 비교를 위해 MATLAB 에서 
학습한 global GMM 파라미터를 고정하여 동일한 
distance–exp–score–argmax 커널을 소프트웨어와 하드웨어

에서 각각 실행하였다. 표 1 에 요약된 per-sample 평균 시

간은 MATLAB–float/Q16 ≈ 8.4 μs, MATLAB–float+copy ≈ 
13.7 μs, FPGA–Q16 ≈ 18.6 μs 로 측정되었다. 여기서 
MATLAB–float+copy 는 매 샘플마다 (𝜇, 𝜎ଶ, 𝜋)를 재설정하

는 비용을 포함한 경우로, 순수 커널 연산보다 데이터 이

동/설정 비용이 실행 시간을 지배할 수 있음을 보여준다. 
현 FPGA 프로토타입 또한 PS 가 AXI4-Lite 레지스터를 
통해 포인트와 파라미터를 순차 전송하며 구동되기 때문

에, 𝐾 = 4, 𝐷 = 3처럼 커널이 경량인 설정에서는 연산 이

득보다 PS–PL 트랜잭션 오버헤드가 전체 지연에 크게 반

영됨을 확인하였다. 
정확도 측면에서는 Q16(FRAC_BITS=9) 양자화 적용 시 
float 대비 best_k mismatch 가 0.4%로 관측되어, 16-bit Q16 
정밀도가 클러스터 선택 결과를 대부분 유지함을 보였다. 
종합하면 본 연구는 고정 GMM 추론 커널을 Q16 으로 하

드웨어 구현했을 때도 소프트웨어와 유사한 클러스터 할

당 결과를 얻을 수 있음을 검증했으며, 동시에 경량 커널

에서 인터페이스 오버헤드가 성능을 제한하는 주요 요인

임을 정량적으로 제시하였다. 향후에는 (𝜇, 𝜎ଶ, 𝜋)를 PL 내

부 BRAM 에 상주시켜 런타임 전송을 제거하고, 포인트만 
스트리밍 입력하는 구조로 전환함으로써 PS–PL 트랜잭션 
오버헤드를 줄이고 처리량을 개선할 계획이다. 
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