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요 약

최근 대규모 언어 모델(LLM)을 다양한 시계열 태스크에 활용하려는 시도가 증가하고 있다. 본 논문은 시계열 예측(Forecasting) 분야에서 효과가
입증된 LLM 인코더 기반의 교차 모달리티 정렬(Cross-Modality Alignment, CMA) 메커니즘을 시계열 이상 탐지(Time Series Anomaly Detection,
TSAD) 태스크로 확장 적용한다. 기존의 TSAD 연구들이 LLM을 주로보조적 수단으로사용했던 것과 달리, 본 연구는 LLM의 풍부한임베딩정보를
시계열표현학습에직접적으로주입하여 탐지 성능을강화한다. 또한, 이상 탐지태스크의 특성을반영한 프롬프트전략과이에최적화된 재구성파이
프라인을 제안하며, 실험을 통해 그 유효성을 입증하였다.

Ⅰ. 서 론

시계열 이상 탐지(Time Series Anomaly Detection, TSAD)는 제조업,

금융, 서버 모니터링 등 다양한 산업 분야에서 시스템의 오작동을 조기에

감지하여 손실을 방지하는 핵심 기술이다 [4]. 딥러닝의 발전과 함께

Autoencoder, Transformer, GAN 등을 활용한 비지도 학습 모델들이 주

류를 이루며 우수한 성능을 입증해 왔다 [4].

최근 대규모 언어모델(Large Language Model)의 강력한 문맥 이해 능

력을 시계열 데이터 분석에 접목하려는 시도가 증가하고 있다. 기존의

LLM 기반 TSAD 연구들은 주로 탐지된 이상의 원인을 설명 [6] 하거나,

시각적 접근법을 시도하는 방법 [5] 등으로 연구되었지만, LLM의 고차원

임베딩 공간을 탐지 모델의 표현 학습에 직접적으로 활용하는 연구는 상

대적으로 미비했다. 반면, 시계열 예측 분야에서 최근 TimeCMA 등과 같

이 LLM 인코더의프롬프트 임베딩을 시계열 임베딩과정렬하여 예측 성

능을 획기적으로 개선한 사례가 보고되었다 [1].

본 논문은 이러한예측 모델에서의 성공 사례에영감을받아, LLM의 프

롬프트임베딩을 시계열이상탐지태스크에 직접적으로활용하는프레임

워크를 제안한다. 구체적으로, 우리는 LLM 인코더를 통해시계열 데이터

의 통계적 특성을 반영한 프롬프트를 입력으로 하여 임베딩을 생성하고,

이를 시계열 임베딩과 교차 모달리티 어텐션(Cross-Modality Attention)

으로 결합하여재구성성능을강화한다. 또한 변동성및추세기반의다양

한 프롬프트 전략을 비교 실험하여 이상 탐지에 최적화된 프롬프트 설계

를 탐구하였고 MSL 데이터를 사용한 실험 결과 기존 방법론들에 준하는

성능을보이며 LLM 임베딩을활용한재구성기반이상 탐지방법론의응

용 가능성을 입증하였다.

Ⅱ. 본론

본연구는시계열데이터의 잠재적 문맥정보를효과적으로포착하기위

해, Liu et al.이 제안한 TimeCMA (Time Series Cross-Modality

Alignment) [1] 모델을 백본 네트워크로 사용하였다. TimeCMA는 시계

그림 1 제안하는 프레임워크 학습 과정

열 데이터 자체를 처리하는 Time Series Encoding Branch와, 텍스트 프

롬프트를 처리하는 LLM-Empowered Prompt Encoding Branch의 이중

모달리티 구조를 특징으로 한다. 특히 핵심 구성 요소인 CMA 모듈은 채

널별 유사도를 기반으로 LLM의 풍부한 의미론적 임베딩을 시계열 임베

딩과 정렬하여, 데이터의 얽힘(Entanglement) 문제를 해결하고 표현력을

강화한다.

기존 TimeCMA는 미래 시점을 예측하는 시계열 예측 태스크를 위해

설계되었으나, 본 연구에서는 이를 재구성 기반의 이상 탐지 태스크로 확

장 적용한다. 우리는 TimeCMA의 인코더 구조와 CMA 메커니즘을 유지

하여정상데이터의분포를학습하되, 모델의출력이미래시점이아닌입

력윈도우자체를 복원하도록 재설계하였다. 이를 통해모델은 LLM이 제

공하는 문맥 정보를 바탕으로 정상 패턴을 재구성하며, 이 과정에서 발생

하는 복원 오차를 기반으로 이상치를 탐지한다.

입력 데이터는 윈도우 크기을 가지는 다변량 시계열  ∊  × 
로 정의된다. 우리는 모델이 각 변수의 고유한 특성에 집중할 수 있도록

inverted embedding layer를 통해  ∊  × 로 convert한다. 시계열
데이터는 Time Series Encoding Branch에 입력되어, 각 채널의 고유한

시간적 의존성과 순차적 패턴을 함축하는 시계열 임베딩 ts∈C × N
으로 인코딩된다.

시계열 데이터를 사용해 LLM이 시계열의 수치적 패턴을 의미론적 문

맥으로 이해하도록돕기 위해, 우리는입력 로부터 통계적 특징을 추출



하여 텍스트 프롬프트를 생성한다. 이 과정 역시 채널별로 독립적으로 수

행되어, 입력 와 1:1로 대응되는 프롬프트 집합 를 구성한다. 구체적
으로, 각 채널에 대해 분산, 추세, 자기상관(Autocorrelation) 등의 통계적

지표를 계산한다. 이값들과각 step의 실제 값들은 사전에정의된템플릿

에 삽입되어 텍스트 문장으로 변환된다. 예를 들어, "From [t1] to [tn],

the values were [v1], ..., [vn]. The stability variance score was

[LastToken]" 와 같은 형태를 띤다. 생성된 텍스트는 Prompts Encoding

Branch를 따라서 LLM 토크나이저와 임베딩 레이어를 거쳐 프롬프트 임

베딩 p∈G× N × E로 변환된다. 여기서 G는 프롬프트의 토큰 길이,
E는 임베딩 차원이다. 해당 프롬프트 임베딩 중 마지막 토큰의 프롬프트

임베딩만을 사용하는 기존 연구의 프레임워크에 따라 마지막 토큰임베딩

을 프롬프트 인코더에 입력하여 얻은 임베딩 집합 last∈N × E만을
사용한다. 결과적으로, 시계열 입력은 그에 상응하는 프롬프트 설명과 정

렬되어, 후속되는 Cross-Modality Attention 모듈에서 상호작용하게 된

다. 이 과정에서 시계열 임베딩은 프롬프트의 의미론적 정보와 결합 되어

강화되며, 이후 디코더를 거쳐  ∈ × 와 같이 투영된다.
본 프레임워크는 이와 같이 생성된 를 활용하여, 미래 시점의 값을 예
측하는 기존 TimeCMA의 모델링 방식과 달리, 입력된 윈도우 자체를 복

원하는 재구성 태스크를 수행한다. 즉, 모델의 목표는 입력 시계열 의
잠재적 분포를 학습하여, 와 가장 유사한 를 생성하는 것이다. 이때,
모델이 LLM 브랜치에서 제공되는 통계적 문맥 정보(Trend, Variance

등)를 활용할 수 있도록 유도한다.

모델의 학습은 입력 와 출력  사이의 차이를 최소화하는 방향으로
진행된다. 이를 위해 우리는 평균제곱 오차(Mean Squared Error, MSE)

를 손실함수로채택하였다. 전체채널 와윈도우길이 에대한재구
성 손실 rec는 다음과 같이 정의된다.
rec N×W i  

N t  
W ∥x ti xti∥

(1)

이 손실함수를 최소화함으로써모델은정상 데이터의주요패턴과 문맥

을 압축적으로 학습하게 된다. 반면, 추론 단계에서 학습된 정상 패턴과

다른 이상 데이터가 입력될 경우, 모델은 이를 효과적으로 복원하지 못하

여 높은 재구성 오차를 발생시키게 되며, 이를 이상 탐지의 척도

(Anomaly Score)로 활용한다.

실험에는 화성 탐사 로버의 상태를 모니터링 하는 NASA MSL (Mars

Science Laboratory) 데이터셋을 사용하였다. 성능 지표로는 기존 연구에

서 주로 사용되었으나 최근 성능을 부풀린다는 비판을 받고 있는 Point

Adjustment (PA-F1) 방식을 배제하고 F-1 score, Aff-F1 , AUC, VUS

를 평가지표로 채택하였다 [3]. 비교 벤치마크 결과는 Zhong et al.의

PatchAD 연구의 평가 결과를 사용하였다 [2].

실험 결과는 위의 표 1과 같다. 제안된 프롬프트 전략 중에서 Variance

정보를포함한프롬프트가 타임스텝간의급격한변화를 효과적으로포착

하여 가장 높은 VUS 및 AUC 성능을 달성하였다. PatchAD 등 최신

SOTA 모델들과의 비교에서는 수치적으로 다소 열세인 부분이존재하나,

본 연구가 기존 TimeCMA의 백본 구조를 별도의 구조적 최적화 없이재

구성 태스크로 전이하였음에도 불구하고 기존 딥러닝 방법론들에 준하는

경쟁력 있는 성능을 기록했다는 점은 매우 고무적이다. 또한, 프롬프트의

설계에 따라성능 편차가발생한다는 실험결과는, LLM의 임베딩이 시계

열표현학습에실질적인영향을미치고있음을시사한다. 결론적으로, 본

실험은 LLM 인코더와 프롬프트 엔지니어링을 활용한 이상 탐지 방법론

이단순한 수치복원을 넘어의미론적 문맥학습을가능케함을입증하며,

향후 연구의 발전 가능성을 보여준다.

Ⅲ. 결론

본 논문에서는 시계열 데이터의 통계적 특성을 반영한 LLM 프롬프트

임베딩을 활용하여, 재구성 기반의 시계열 이상 탐지 프레임워크를 제안

하였다. 우리는 TimeCMA 구조를 백본으로 채택하여 시계열과 텍스트

모달리티 간의 교차 어텐션을 수행하였으며, 실험을 통해 Variance 기반

프롬프트가 이상 탐지에 가장 효과적임을 확인하였다. 별도의 구조적 최

적화 없이 수행된 실험임에도 불구하고 기존 딥러닝 기반 모델들에 준하

는성능을달성함으로써, LLM의 의미론적 지식을 이상탐지 태스크에 직

접적으로 활용할 수 있는 가능성을 입증하였다. 향후 연구 방향으로는 비

정상 탐지에서의 효과적인 활용을 위한 구조 및 프롬프트의 개선 그리고

실제 환경에서 활용하기 위한 경량화를 통해 성능을 강화할 계획이다.
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Methods AUC F1-cls Aff-F1 V-ROC V-PR
TimesNet 57.18 21.24 67.64 64.63 20.67
D3R 63.00 23.98 69.79 69.02 20.93
M2N2 59.15 21.76 67.88 65.40 21.55
PatchAD 60.94 24.92 70.10 66.43 19.65
ours (trend) 57.58 21.28 67.92 62.50 16.70
ours (variance) 59.09 21.82 67.93 64.12 17.41
ours (autocorr) 57.63 21.15 67.92 62.56 16.85

표 1 각 모델 별 평가 결과


