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요 약

본 논문은 4가지 LPI 레이더의 파형(LFM, Barker, Costas, Frank Code)을 식별하기 위해 STFT(Short-Time Fourier Transform)
기반의 시간-주파수 이미지(TFI, Time-Frequency Image)를 입력으로 사용하여 2계층(2-Layer)으로 구성된 경량화 CNN 모델을 통
해 학습하였다. 실험 결과, SNR –5dB 이상에서는 100%의 식별 정확도를 보였지만, SNR –10dB에서는 위상 변조 파형(Barker,
Frank Code)의 식별 정확도가 저하됨을 확인하였다.

Ⅰ. 서 론

현대 전장환경에서의레이더기술은 적의탐지확률을 낮추는방향으로

발전하고 있다. LPI(저피탐) 레이더는 낮은 피크 전력, 넓은 대역폭, 주파
수 가변성 등을 적용하여 레이더 경보 수신기(RWR), 전자 지원(ES) 및

전자 정보(ELINT) 수신기에 의해 탐지되거나 식별되기 어렵게 만든다.

이에 대응하여 아군의 생존성을 확보하기 위해서는 복잡하게 변조된 LPI
신호를 조기에 탐지하고 식별하는 기술이 필수적이다. [1]

최근 딥러닝 기술의 발전으로 LPI 신호를 시간-주파수 이미지(TFI)로

변환하여 식별하는 연구가 활발히 진행되고 있다. 다수의 선행 연구는 고
해상도 이미지를 얻기 위해 CWD(Choi-Williams Distribution)를 주로

사용하였으나, 이는 높은 연산 복잡도로 인해 실시간처리에 한계가있다.

[2]의 연구 결과에 따르면, CWD는 STFT(Short-Time Fourier
Transform) 대비 약 88배 이상의연산시간이소요되어신속한대응이 필

요한 전술 환경에 부적합할 수 있다. 따라서 실시간성을 최우선으로 하는

시스템에서는연산효율이뛰어난 STFT 기반의전처리방식이요구된다.
또한, 딥러닝기반의레이더신호처리 분야에서 경량화가 중요한 과제로

대두되고있다. CNN이 LPI 파형 식별에효과적임은확인되었으나 [3], 대

부분 고성능 GPU와 대규모 데이터셋에 의존한다. 그러나 실제 전장에서
의시스템은 주로무인기(UAV)나 위성과같이 전력, 메모리, 연산 자원이

제한된 플랫폼에 배치된다. 고성능 딥러닝 알고리즘의 복잡성은 이러한

임베디드장치에서의 저전력및실시간처리 요구사항을충족하기어렵게
만든다. [4]

이에 본 논문에서는 4가지 LPI 레이더 파형(LFM, Barker, Costas,

Frank)을 효율적으로 식별하기 위해, STFT 기반의 시간-주파수 이미지
(TFI)와 2계층의 경량화된 CNN 모델을 이용한 식별 기법을 제안한다.

Ⅱ. 본론

1. 신호 모델 및 전처리

본 논문에서는 LPI 레이더 시스템에서 널리 사용되는 대표적인 펄스 내
변조(Intra-pulse Modulation) 방식 4가지를 선정하였다. 선정된 파형은

주파수변조방식인 LFM(Linear Frequency Modulation)과 Costas Code,

그리고 위상 변조 방식인 Barker Code와 Frank Code로 구성된다.
레이더 신호생성을 위한시뮬레이션 환경에서샘플링주파수는 10MHz,

펄스 폭은 20㎲로 설정하였다. 각 파형의 세부 파라미터는 LFM의 경우

4MHz의 대역폭(Bandwidth)을 가지며, 이산 코드는 각각 Barker-13,

Costas-10, 그리고 Frank-16 ( )의 길이를 갖도록 설계하였다. 생
성된 신호는 윈도우 크기(Window Size)가 64인 STFT를 거쳐 ×
크기의 시간-주파수 이미지(TFI)로 변환하였다. [그림 1]은 전처리 과정
을 거쳐 생성된 4가지 파형의 스펙트로그램 예시를 나타낸다. 또한, CNN

의 학습 속도 향상과 계산안정성을 위해생성된 스펙트로그램의 픽셀 값

을 [0, 1] 범위로정규화(Normalization)하여 모델의 입력으로 사용하였다.

그림 1. 4가지 LPI 파형의 STFT 스펙트로그램 예시



2. 제안하는 경량화 CNN 모델

본 논문에서 제안하는 모델은 [표 1]과 같이 2개의 합성곱 블록
(Convolutional Block)과 완전연결 계층(Fully Connected Layer)으로 구

성된 경량화 구조이다. 입력 데이터로는전처리된 × 크기의 TFI를
사용하였다. 각 블록은 × 커널과 최대 풀링(Max Pooling)을 통해 신
호의 지역적 특징(Local Features) 추출 및 차원 축소를 수행하고, 이를

통해 효율적인 연산과 잡음이 심한 환경에서도 정확하게 파형을 구분할

수 있게 하였다. 추출된 2차원 특징 맵들은 1차원 벡터 형태로 평탄화
(Flatten)되며, 이 벡터가 완전연결 계층을 통과하면서 최종적으로 4가지

파형 클래스로 식별된다.

모델 최적화를위해 Adam 옵티마이저(Optimizer)를 사용하였으며, 학습
률(Learning Rate)은 0.001로 설정하였다. 손실 함수(Loss Function)는

교차 엔트로피(Cross-Entropy)를 적용하였고, 총 10 에포크(Epochs) 동

안 학습을 진행하였다.

Layer Output Shape Kernel / Stride Parameters

Input ×× - 
Conv_1 ×× × /  
Pool_1 ×× × /  
Conv_2 ×× × /  
Pool_2 ×× × /  
Flatten  - 

FC (Output)  - 
Total 

표 1. 제안 CNN의 세부 구조

3. 시뮬레이션 분석 및 결과

제안 모델의 성능을 검증하기 위해 생성된 2,000개의 데이터셋을 8:2 비
율로무작위(Random)로 나누어 학습 및 테스트데이터로 사용하였다. 학

습 과정에서 모델이 다양한 잡음 환경에 적응할 수 있도록 -5dB에서

+5dB 사이의 SNR 조건에서 AWGN 잡음을 추가하여 설정하였다. 테스
트는 학습 조건과 동일한 시나리오 1(SNR –5~5dB)과 모델의 한계 성능

을 검증하기 위한 시나리오 2(SNR -10dB)로 나누어 진행하였다.

[그림 2]는 시나리오 1에서의학습과 테스트의 정확도(Accuracy) 곡선을
나타낸다. 제안 모델은 4 에포크 이후 안정적으로 수렴하는 모습을 보이

며, 학습 및 테스트 데이터 모두 100%에 도달하였다. [그림. 3(a)]의 파형

을 식별하는 혼동행렬(Confusion Matrix)에서는 LPI 레이더의 4가지 파
형 모두에서 오분류가 발생하지 않음을 볼 수 있다.

그림 2. 학습-테스트 정확도 곡선 (SNR -5 ~ 5dB)

낮은 SNR 환경(SNR –10dB)인 시나리오 2의 결과([그림 3(b)])를 살펴

보면, LFM 파형의 경우 높은 식별률을 보여주나 위상 변조인 Barker와
Frank Code에서는 식별률이 현저히 저하됨을 알 수 있다. 특히 Frank

Code의 식별률 저하가 두드러지는데, Frank Code가 위상이 미세하게 변

하는 다중위상(Polyphase) 구조를가져, BPSK 기반인 Barker Code보다

잡음에의한위상왜곡에더민감하기때문이다. 이는 신호전처리과정인
STFT에서 크기(Magnitude) 정보만을 시각화함에 따른 위상(Phase) 정

보의 손실을 원인으로 볼 수 있다. 잡음이 높아지는 낮은 SNR 환경에서

는 잡음이위상 변화 패턴을 마스킹(Masking)하기 때문에 식별 정확도가
감소한 것으로 분석된다. 선행 연구 [2]에 따르면, 고해상도 시간-주파수

분포인 CWD는 STFT 대비높은해상도를제공하여 신호의 미세 패턴을

명확히 분리할 수 있다. 따라서 CWD를 적용한다면 낮은 SNR 환경에서
의 위상 변조 신호 식별률을 개선할 수 있을 것으로 예상된다. 다만, 본

연구는 임베디드 환경에서의 실시간성을 최우선 목표로 하였기 때문에,

연산 효율이 뛰어난 STFT 기반의 경량화 모델을 제안하였다.

(a) (b)
그림 3. LPI 파형 식별 혼동행렬 (a) 시나리오 1 (b) 시나리오 2

Ⅲ. 결론

본 논문에서는 LPI 레이더 파형을 실시간으로 식별하기 위한 경량화된
딥러닝 모델을 제안하였다. 연산 복잡도가 높은 기존의 CWD 대신 연산

효율이 뛰어난 STFT를 전처리 과정에 적용하였으며, 2개의 계층만으로

구성된 경량 CNN 모델을 설계하여 하드웨어 부담을 최소화하였다. 제안
모델은 SNR -5dB 이상에서는 4가지 주요 파형(LFM, Barker, Costas,

Frank)에 대해 100%의 식별 정확도를달성하였으나, SNR –10dB에서는

위상 변조 파형(Barker, Frank)의 식별률이 저하되는 한계를 확인하였다.
이는 STFT 기반 전처리 과정에서 위상정보가 소실되고, 강한 잡음이 파

형의 패턴을 마스킹하기 때문으로 분석된다. 향후에는 낮은 SNR 환경에

서의 식별 성능을 개선하기 위해, STFT의 연산 효율을 유지하면서도 위
상 정보를 효과적으로 활용할 수 있는 추가적인 연구를 진행할 계획이다.
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