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요 약

본 논문에서는 배터리의 전압, 전류, 온도를 이용해서 SoC를 예측하는 모델 구조를 제안한다. 제안하는 모델은 Kolmogrov-Arnold 정리를 활용한
KAN을 시계열데이터처리모델로변형한 TKAN을 이용한다. KAN은 기존 MLP와 같이같은층에선동일한활성화함수를가지지만학습을거듭하
면서 각노드의 활성화 함수가변경된다는특징이있다. 하지만 KAN은 입력을 2차원으로 받기때문에, 시계열데이터에적합하지않다. 이러한 단점을
TKAN은 LSTM의 구조의출력게이트에 KAN을 삽입해해결한다. TKAN은 현재시점의상태가이전 시점의상태의 영향을받음과 동시에데이터가
길어질수록 기울기가 사라지는 장기 의존성 문제도 해결한다. 모델 학습에 미국 위스콘신 대학교 매디슨 연구진의 Panasonic 배터리 실험 데이터를
활용하였다. 실험 결과, 제안한 네트워크는 배터리 데이터셋의 비선형성을 잘 반영해 기존의 방법 대비 MAE, RMSE 지표에서 우수한 성능을 보였다.

Ⅰ. 서 론

배터리 SoC(State of Charge)는 현재 배터리에 저장된 잔여 에너지의 비

율을 나타내는 지표로, 배터리 관리 시스템의 가장 기본적이면서도 중요

한 상태 변수 중 하나이다. 정확한 SoC 예측은 배터리의 안전성, 성능, 수

명 관리에 직접적인 영향을 미치므로, 실시간 응용 환경에서 필수적인 기

술이다.

배터리 SoC 예측에 딥러닝 모델을 활용하는 추세이다. 기존에는

RNN(Recurrent Neural Network), LSTM(Long Short-Term Memory

Network) 등 순환 신경망 기반 네트워크가 사용되었으며[1][2], 최근에는

장기 의존성 문제에 강인한 Transformer 기반 네트워크가 사용되고 있

다.[3] 하지만 순환 신경망 기반 네트워크는 장기 의존성 문제가 여전히

존재하고, Transformer 기반 네트워크는 한 층의 각 노드에서 모든 활성

화함수가 동일하기때문에완벽한비선형성을 표현하지못한다는단점이

존재한다.

Ⅱ. 본론

2.1 데이터셋

본 논문에서는 미국 위스콘신 대학교 매디슨의 연구진이 Panasonic

18650PF 전기차 배터리 셀을 다양한 온도에서 여러 사이클로 수행한 공

개데이터셋을이용한다.[4] 온도는 –20℃부터 25℃까지 5℃도단위로학

습과검증, 테스트데이터셋에서모두 활용했다. 학습 데이터셋의 Cycle은

기본적인 충·방전 사이클인 Cycle_1 ~ Cycle_4와 급가속과급감속사이클

인 US06, 불규칙한 전류 사이클인 NN 등 총 10개의 Cycle를 이용한다.

검증, 테스트데이터셋의 Cycle은 고속도로 정속 주행 사이클인 HWFET

등 총 3개의 Cycle을 이용한다.

Object Cycle

Train

Cycle_1, Cycle_2, Cycle_3,

Cycle_4, NN, US06,

US06_HWFET_UDDS_LA92,

HWFET_UDDS_LA92_NN,

US06_HWFET_UDDS_LA92_

NN
Validation, Test HWFET, UDDS, LA92

표 1. 실험에 사용한 데이터셋 Cycle 종류

전력, 전류, 온도 데이터를 입력 특성으로 사용한다. 또한 한번의 모델 입

력으로 들어가는 시퀀스 길이는 128로 고정한다.

2.2 KAN

KAN(Kolmogrov-Arnold Network)은 식 (1)의 Kolmogrov-Arnold 정

리를 딥러닝 모델에 적용한 모델이다.[5] Kolmogrov-Arnold 정리의핵심

은 다변수 함수의 근사에는 다변수 비선형성이 필요 없다는 것이다. 즉,

딥러닝 모델 구현시 비선형성은 1D 함수에만 존재하고 변수 간 상호작용

은 선형 결합으로 처리한다는 것이다.

KAN은 일반적인 MLP(Multi Layer Perceptron)와달리 노드가아닌엣

지에 활성화 함수가 존재한다. 그래서 MLP는 각 활성화 함수가 여러 엣

지를 받는 Fully-Connected 구조인 반면, KAN은 각 활성화 함수가 하나

의 엣지만 처리하는 구조이다. 또한 KAN은 활성화 함수를 학습 중에 업

데이트해서, 초기에는 활성화 함수가 층 별로 동일하지만 학습 데이터셋

에 맞춰서 활성화 함수의 개형이 변한다.

                (1)



2.3 네트워크 구조

TKAN(Temporal KAN)은 KAN을 시계열 데이터 처리 모델로 변형한

모델이다. TKAN은 LSTM의 게이팅 매커니즘을 일부 변형해 사용한

다.[6] 차이점은 LSTM 내부에 RKAN(Recurring KAN)이라는 네트워크

를 추가적으로 거친다는 점이다.

전체적인 네트워크 구조는 그림 1과 같다. 네트워크는 크게 RKAN을 포

함한 3개의 LSTM Layer로 구성된다. 입력 데이터는 PyTorch 환경에서

(batch, features, time) 차원으로 입력을 받으므로, (128, 3, 128) 차원의

데이터를 한번에사용한다. LSTM Layer는 여러 개의 LSTM Block으로

구성되며, 각 층의 LSTM Layer는 아래부터 순서대로 128, 64, 32개의

LSTM Block을 가진다.

각 LSTM Block은 이전 Block의 입력   , 은닉값   , 셀 상태 를 사용한다. forget, input 게이트에선 이 값들을 이용해 연산을 하
고 추가적으로 셀 상태를 계산해 다음 LSTM Block에 블록에 전달한다.

output 게이트에서는 입력되기 이전에 RKAN 네트워크를 거친다.

RKAN은  과 이전 Block의 KAN에서 서로 다른 개형의활성화 함
수를 거친 은닉값   를 이용한다. 내부적으로 Linear 층과 KAN을
거쳐 비선형성과잔차입력을추가해 output 게이트와다음 LSTM Block

로 정보를 전달한다. output 게이트에서는 이 정보를 이용해 은닉값을 계

산하고 다음 LSTM Block과 상단의 Layer에 전달한다.

모델 학습의손실함수로는 평균제곱오차(Mean Squared Error, MSE)

를 사용했고, 학습률 0.005의 Adam 옵티마이저를 사용해 파라미터를 최

적화했다. 추가적으로불필요한과적합을 막기위해, 검증손실이 10 에포

크동안 감소하지 않으면 학습을 조기에 종료하는 EarlyStopping을 적용

했다. 모델 테스트의 손실 함수로는 평균 절대 오차(Mean Absolute

Error, MAE)와 평균 제곱근 오차(Root Mean Squared Error, RMSE)를

사용했다.

Ⅲ. 결론

본 논문은 배터리 SoC 예측 성능 향상을 위해 TKAN 모델을 제안하였

다. 제안한 모델은 시간순서대로 측정된 데이터를 각 LSTM Block에 대

응시켜 전압, 전력, 온도의시간순서에따른 관계를 학습한다. 또한 KAN

을 이용해 데이터에 더 최적화된엣지별 활성화함수를 이용해높은 성능

을 달성할 수 있다. 제안한 모델은 RMSE와 MAE 지표에서 기존 방법보

다더욱향상된성능을보였다. 추후연구에서는실제주행배터리데이터

셋을 포함한 다양한 배터리 데이터셋 환경에서 학습을 진행하고, 실시간

추론을 위한 모델 경량화 및 최적화를 수행할 예정이다.
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그림 1. 제안한 네트워크 구조


