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요 약  

 

기존 반도체 공정 환경에서는 데이터 수집 제약과 희귀 결함으로 인한 데이터 불균형 문제가 존재했다. 이를 이미지 

생성을 통해 공정 데이터를 대체하여 공정 분석에 기여하는 생성형 인공지능 기술을 제시한다. 웨이퍼 결함 맵 데이터에 

대해 3 가지 생성 모델을 설계하고 비교, 분석하였다. 실험 결과 DDIM 이 구조 재현 성능은 Stable Diffusion 과 

유사하면서도 실제 데이터 분포 유사성은 약 55% 이상 뛰어나 세 모델 중 가장 우수한 생성 성능을 보임을 확인했다.  

 

Ⅰ. 서 론  

반도체 제조 공정에서 발생하는 웨이퍼 결함은 수율 

저하와 공정 신뢰성 저하로 직결되기에 결함 패턴 

분석은 공정 개선과 품질 관리의 핵심 요소이다. 그러나 

실제 반도체 공정 환경에서는 비용과 시간, 장비 접근성 

문제로 인해 결함 데이터의 대규모 수집이 제한적이다. 

특히 발생 빈도가 낮은 결함 유형은 데이터 불균형으로 

데이터 기반 분석에서 정확도 저하 문제를 동반한다. 

이러한 문제 상황에서 생성 모델을 통해 실제 공정 

데이터를 보완하거나 대체하여, 결함 분석 알고리즘의 

학습 안정성을 높이고 희귀 결함 패턴을 대응하고자 

한다. 특히 확산 모델은 잡음 제거 과정을 통해 고품질 

이미지를 생성할 수 있다. 대표적으로 잡음 제거 확산 

확률적 모델 (DDPM)[1], 이를 비확률적 경로로 

단순화한 잡음 제거 확산 암묵적 모델 (DDIM)[2], 

그리고 Stable Diffusion[3] 기반 잠재 확산 모델(LDM) 

이 있다.  

본 연구에서는 웨이퍼 결함 맵 데이터셋으로 DDPM, 

DDIM, Stable Diffusion 기반 생성 모델을 설계 및 

구현하고자 한다. 생성된 웨이퍼 결함 이미지는 희귀 

결함 패턴 보완, 공정 이상 시나리오 시뮬레이션 등 

다양한 공정 분석 단계에 활용될 수 있다. 따라서 본 

논문에서는 데이터 부족 및 불균형 문제를 해결하기 

위해 생성형 인공지능 설계 기술을 제시하고자 한다. 

Ⅱ. 본론  

Ⅱ.1 데이터셋 및 전처리  

본 연구에서는 혼합형 타입 웨이퍼 결점 데이터셋을 

사용하였다. 해당 데이터셋은 정상 및 다양한 결함 

유형(예시 중앙 결함 패턴, 도넛 결함 패턴, 랜덤 결점 

패턴 등)을 포함하며, 각 샘플은 52x52 해상도의 웨이퍼 

맵 이미지로 구성된다. 픽셀 값은 배경, 중간 영역, 결함 

영역을 구분하는 삼값 구조이다. 

모든 입력 이미지는 {-1, 0, 1} 범위로 정규화하여 

사용하였다. 스테이블 디퓨전 모델의 경우 네트워크 구조 

요구사항에 따라 이미지를 64x64 로 제로 패딩하여 

VAE 인코더를 통해 16x16 잠재 공간으로 변환하였다.  

DDPM 및 DDIM 모델은 원본 52x52 해상도에서 직접 

확산 과정을 적용하였다. 

 

Ⅱ.2 모델 구조 및 학습 방법 

Ⅱ.2.1 DDPM 

DDPM 은 정방향 확산 과정에서 가우시안 노이즈를 

점진적으로 추가하고, 역과정에서 이를 제거하는 

방식으로 학습된다. 본 연구에서는 시간 임베딩과 클래스 

조건을 포함한 ResUnet 구조를 사용하였으며, 픽셀 

공간에서 직접 노이즈 예측을 수행하였다. 손실 함수로는 

평균 제곱 오차(MSE)를 사용하였다. 

Ⅱ.2.2 DDIM 

DDIM 은 DDPM 의 확률적 역확산 과정을 비확률적 

경로로 단순화한 모델이다. 동일한 학습된 Unet 을 

사용하되, 샘플링 단계에서 스텝 수를 줄여 빠른 생성이 

가능하다. 본 연구에서는 카라스 스케줄링을 적용한 

DDIM 샘플러를 사용하였다. 

Ⅱ.2.3 스테이블 디퓨전 (잠재 확산 모델)  

 

<그림 1> 스테이블 디퓨전 설계 구조도 

스테이블 디퓨전은 VAE 를 이용해 이미지를 저차원 

latent 공간으로 압축한 뒤, 해당 잠재 공간에서 확산 

과정을 수행하는 방식이다. 본 연구에서는 잠재 차원 4, 



보틀넥 해상도 16x16 구조를 사용하였다. 또한 분류기 

비사용 가이던스 (CFG) 및 CFG 리스케일 기법을 

적용하여 조건부 생성 성능을 향상시키고자 하였다.  

Ⅱ.3 평가 지표  

웨이퍼 맵의 구조적 특성을 반영하기 위해 본 

연구에서는 다음 세 가지 지표를 사용하였다. 

 

첫번째 지표로는 Tri-val Dice / Macro F1-score 를 

사용하였다. 이 지표는 생성 이미지와 실제 이미지의 

픽셀을 {-1, 0, 1}로 삼값화한 후, 각 클래스에 대한 

다이스 계수 및 매크로 F1-점수를 계산하였다. 이는 

결함 영역의 구조적 일치도를 직접적으로 평가할 수 

있는 지표이다. 두번째 지표로는 C2ST AUC (Classifier 

Two-Sample Test)를 사용하였다. 이 지표는 실제 

이미지와 생성 이미지를 구분하는 이진 분류기를 

학습시켜 AUC 를 측정하였다. AUC 가 0.5 에 가까울수록 

두 분포가 유사함을 의미하며, 1.0 에 가까울수록 쉽게 

구분 가능함을 의미한다. 마지막 세번째 

지표로는 SSIM@를 사용하였다. 각 클래스별로 실제 

이미지 풀에서 무작위로 샘플을 선택하여 생성 

이미지와의 SSIM 을 K 회 반복 측정하고, 평균 및 

표준편차를 산출하였다. 이는 보조적인 구조 유사도 

지표로 활용하였다. 

Ⅱ.4 실험 결과 및 분석 

본 연구에서는 DDPM, DDIM, 스테이블 디퓨전(CFG=2.5) 

모델들을 동일한 웨이퍼 맵 데이터셋과 평가 지표로 

비교하였다. 평가 지표는 앞서 언급한 세가지 지표를 

사용하였다. 표 1은 각 모델의 주요 전역 성능 지표를 

요약한 것이다. 

Model GLOBAL Dice(def) GLOBAL MacroF1 C2ST AUC

DDPM 0.3883 0.4617 1

DDIM 0.4099 0.6605 0.4478

Stable Diffusion (CFG=2.5) 0.4304 0.6672 1  
  <표 1> 세 모델의 전역 성능 지표Ⅰ 

Model GLOBAL SSIM@50 GLOBAL Dice(bg) GLOBAL Dice(mid)

DDPM 0.0733 0.6195 0.3771

DDIM 0.1774 0.9503 0.6214

Stable Diffusion (CFG=2.5) 0.1573 0.9533 0.6178  
<표 2> 세 모델의 전역 성능 지표Ⅱ 

우선 DDPM 은 모든 지표에서 가장 낮은 성능을 보였다. 

특히 Macro F1-score 가 약 0.46 수준으로, 결함 

구조를 의미 있게 재현하지 못하였다. 이는 픽셀 

공간에서 확률적 역확산을 수행하는 DDPM 특성상, 

52x52 인 저해상도 환경에서 결함 패턴이 과도하게 

평균화되었기 때문으로 해석된다. DDIM 은 DDPM 대비 

전반적으로 성능이 크게 향상되었다. 특히 전역 Macro 

F1 ≈  0.661, Dice(mid) ≈  0.622 로, 중간 영역 및 결함 

구조 재현에서 안정적인 결과를 보였다. 또한 C2ST 

AUC 가 0.448 로 나타나, 생성 이미지와 실제 이미지의 

분포가 상대적으로 유사함을 확인할 수 있었다. 스테이블 

디퓨전(CFG=2.5)은 Macro F1-score 기준으로 0.667 로 

가장 높은 수치를 기록하였으며, Dice(def) 또한 

0.430 으로 DDIM 대비 소폭 향상되었다. 이는 클래스 

조건을 잠재 공간에서 명시적으로 반영하는 CFG 구조의 

효과로 해석된다. 그러나 SSIM@50 은 0.157 로 

DDIM(≈0.177)보다 낮아, 구조적 일관성 측면에서는 

DDIM 이 더 안정적인 결과를 보였다. CFG 값을 

증가시킨 실험 결과(CFG=3.5, 10.0), CFG 가 커질수록 

모든 지표가 급격히 악화되었다. 예를 들어 

CFG=10.0 에서는 GLOBAL Macro F1 ≈  0.467, 

Dice(bg) ≈  0.619, SSIM@50 ≈  0.073 으로, DDPM 

수준까지 성능이 저하되었다. 이는 저해상도 

웨이퍼맵에서 과도한 가이던스가 결함 분포를 왜곡하고, 

배경과 결함 간 균형을 무너뜨리는 현상으로 해석된다. 

따라서 스테이블 디퓨전에서는 CFG=2.5 전후의 값이 

가장 합리적임을 확인하였다. 

정성적 비교 결과에서도 정량적 비교 결과와 유사한 

경향이 나타났다. 스테이블 디퓨전은 원형 웨이퍼 형태는 

잘 유지하였으나, 결함 패턴이 과도하게 균질화되거나 

중심 결함 구조가 흐려졌다. 반면 DDIM 은 결함 밀도와 

분포 측면에서 실제 이미지와 유사한 패턴을 보다 

안정적으로 생성하였다. 

class 0 class 1 class 2 class 3 class 4 class 5 class 6 class 7
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<그림 2> 실제 및 모델 별 생성 이미지 비교 

Ⅲ. 결론  

 본 연구에서는 DDPM, DDIM, Stable Diffusion 기반 

생성 모델들을 저해상도(52x52) 웨이퍼 결함 데이터셋에 

적용하고 평가 지표를 통해 분석하였다. 실험 결과, 

저해상도 웨이퍼 맵 환경에서는 픽셀 공간에서 확산 

과정을 직접 모델링하는 DDPM, DDIM 이 결함 구조 

재현 측면에서 우수한 성능을 보였다. 특히 DDIM 은 

상대적으로 적은 샘플링 단계에서도 결함 패턴의 위치와 

형태를 안정적으로 재현하였다. 반면 스테이블 디퓨전은 

자연 이미지 생성을 목적으로 설계된 VAE 기반 잠재 

표현의 특성으로 인해 웨이퍼 맵과 같이 이산적이고 

규칙적인 구조를 가지는 데이터에서는 생성 성능이 

떨어졌다. 이러한 결과는 웨이퍼 결함 데이터와 같은 

구조적 제약이 강하고 고해상도가 아닌 도메인에서는 

잠재 확산 구조가 반드시 최적의 선택이 아님을 

의미한다. 따라서 데이터의 특성과 표현 방식에 따른 

생성 모델 선택이 중요하다. 

참 고 문 헌  

[1] Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion 

probabilistic models. Advances in Neural Information 

Processing Systems (NeurIPS), 33, 6840– 6851.  

[2] Song, J., Meng, C., & Ermon, S. (2021). Denoising 
diffusion implicit models. International Conference on 

Learning Representations (ICLR). 

[3] Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & 

Ommer, B. (2022). High-resolution image synthesis with 

latent diffusion models. Proceedings of the IEEE/CVF 

Conference on Computer Vision and Pattern Recognition 

(CVPR), 10684– 10695. 


