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요 약  

 
본 논문에서는 3D GPR 데이터의 B-scan, C-scan 을 활용하여 지하 공동을 세부 유형으로 분류하는 Transformer 기반 

딥러닝 방법을 제안한다. 연속된 B-scan 을 3 차원 voxel 형태로 구성하여 공간적 연관성을 반영하고, C-scan 의 top-

view 특성을 고려하여 Transformer 인코더를 적용하였다. 실험 결과, 제안한 방법은 기존 방법 대비 다중 시야 정보 

활용 측면에서 공동 세부 유형 분류 성능을 효과적으로 향상시킴을 확인하였다. 

 

 

Ⅰ. 서 론  

지표투과레이더(Ground Penetrating Radar, GPR)는 

전자기파의 반사 신호를 분석하여 지표 하부 구조를 

비파괴적으로 탐지할 수 있는 기술로, 도로 함몰 및 

싱크홀과 같은 지반 위험 요소를 사전에 탐지하는 데 

활용되고 있다. 최근 3D GPR 시스템의 발전으로 다중 

시야(multi-view) 정보를 활용한 딥러닝 기반 결함 탐지 

연구가 활발히 진행되고 있다 [1]-[3]. 지하 공동은 

형성 원인과 형태에 따라 붕괴 위험도가 상이하며 

싱크홀 발생 가능성과 밀접한 관련이 있다. 따라서 

단순한 공동 존재 여부 탐지를 넘어, 공동의 세부 유형을 

구분하는 것은 위험도 평가 및 유지 관리 우선순위 

결정에 있어 중요한 정보가 된다. 그러나 기존 연구들은 

주로 공동 탐지에 초점을 맞추고 있으며, 세부 유형 

분류에 대한 연구는 상대적으로 제한적이다.  

연구 [2]에서는 3 차원 GPR 데이터와 Top-scan(본 

논문에서의 C-scan), A-scan 신호를 함께 활용하는 다중 

모달(multi-modal) 융합 모델을 제안하였다. 해당 연구는 

다중 모달 정보를 효과적으로 결합하는 구조를 

제시하였으나, A-scan 신호가 자동으로 저장되지 않는 

일부 GPR 장비 환경에서는 동일한 방식으로 적용하기 

어려운 한계가 존재한다. 이에 본 연구에서는 기존 모델 

구조를 바탕으로 A-scan 정보가 제공되지 않는 

환경에서도 적용 가능하도록 모델을 재구성하였다. 또한 

C-scan 의 top-view 특성을 효과적으로 반영하기 위해 

Transformer encoder 를 추가함으로써, 전역적인 공간 

관계를 학습할 수 있도록 설계하였다. 이를 통해 다중 

시야 정보를 활용한 Transformer 기반 특징 학습이 

공동 세부 유형 분류에 미치는 영향을 분석하고자 한다.  

 

Ⅱ. 본 론  

2.1. 3D GPR  

3D GPR 은 다중 송수신기 배열을 통해 지하 구조의 

3 차원 정보를 획득한다. A-scan 은 시간에 따른 반사 

신호를 나타내는 1D signal 이고, B-scan 은 장비의 

이동방향, 깊이 정보를 결합한 단면 영상이다. C-scan 은 

특정 깊이에서의 반사 신호를 평면(top-view) 형태로 

표현한 영상으로, 장비의 이동 방향과 레이더 배열 방향 

정보를 포함한다. 이러한 다중 시야 정보는 지하 구조의 

형상 및 분포를 상호 보완적으로 표현한다.  

 
 

그림 1. 3D GPR 설명



 

 

표 1. 모델 간 결과값 비교

2.2. 데이터셋 구성 및 전처리 

본 연구에서는 AI Hub 에서 제공하는 3D 

지표투과레이더 탐사 데이터를 사용하였다. 데이터는 

공동(대칭, 비대칭, 기타), 비공동(종배관, 맨홀, 

횡배관)의 총 6 개 클래스로 구분된다. B-scan 과 C-

scan 으로 구성되어 있으며 Mala, IDS, NM, 3D Radar 총 

4 종의 장비로 수집되었다. 장비 및 수집 조건에 따라 

해상도 및 스캔 수가 상이한 특징을 가진다. 데이터는 

실측 탐사 구간, 시간, 게인(gain value)값을 기준으로 

그룹화하였다. 스캔 수 불균형을 완화하기 위해 channel 

layer 기준으로 정렬한 후, 중심 스캔을 기준으로 인접한 

3 장의 B-scan 을 선택하여 3 차원 형태로 구성하였다. 

C-scan 또한 동일한 방법으로 3 장의 이미지를 

사용하였다. 모든 C-scan 이미지는 32×256 크기로 

resize 하였다. 

 

2.3. 사용 모델 

기존 연구 [2]의 모델 M2FNet 을 기반으로 A-scan 

모듈을 제거한 구조를 baseline 모델로 선정하였다. 

모델은 B-scan 과 C-scan 을 각각 처리하는 이중 

인코더 구조로 구성된다. B-scan 은 3D CNN 과 

DenseBlock 을 통해 특징이 추출된다. 이후 레이더 채널 

간 중요도를 반영하기 위해 Radar-channel attention 

module 을 적용하여 유의미한 특징을 강조한다. C-

scan 은 2D CNN 과 DenseBlock 구조로 특징이 추출된 

후, Region Proposal 과 zero-masking 을 통해 관심 

영역을 강조한다. 이후 두 시야의 특징은 융합 모듈을 

통해 결합되어, Transformer decoder 기반 object 

query 를 통해 객체 분류와 위치 예측을 수행한다.  

본 연구에서는 C-scan encoder 에 Transformer 

encoder 를 추가하여 전역적인 공간 관계를 학습하게 

한다. 이를 통해 공동의 전체 형상 및 분포 특성이 특징 

표현에 반영되도록 한다. 성능 평가는 연구 [2]의 평가 

기준을 참고하여 수행하였다. IoU 임계값은 0.5 로 

설정하였으며, 상위 20 개의 prediction box 를 대상으로 

Precision(P), Recall(R), F1-score(F1), mAP 를 

산출하였다.  

 

 
 

그림 2. Trans-M2FNet 구조 

 

2.4. 실험 결과 

실험 결과, 제안 모델은 공동 세부 유형 분류에서 

Precision, Recall, F1-score 가 전반적으로 

향상되었으며, 특히 cavity_A(대칭), cavity_B(비대칭) 

클래스의 성능 개선이 두드러졌다. 이는 C-scan 특징 

맵에 Transformer encoder 를 적용함으로써, C-scan 의 

전역적인 공간 관계를 효과적으로 학습한 결과로 

해석된다. 반면, 탐지 성능 지표인 mAP(IoU ≥ 0.5)는 

baseline 대비 소폭 감소하였다. 이는 제안 모델이 더 

많은 후보 영역을 고려하는 과정에서 일부 예측의 위치 

정확도가 상대적으로 낮아진 결과로 해석된다. 

 

Ⅲ. 결 론  

본 논문에서는 기존 M2FNet 기반의 baseline 모델과 

C-scan encoder 에 Transformer encoder 를 추가한 

Trans-M2FNet 모델을 비교 실험하였다. 두 모델은 

동일한 데이터셋과 동일한 학습 및 평가 기준에서 

실험되었으며, 모델 구조 차이에 따른 성능 변화를 

분석하였다. 실험 결과, Trans-M2FNet 은 공동 세부 

유형 분류 성능 향상에 효과적이었으며, 특히 C-scan 의 

전역 정보가 공동의 구조적 특성을 반영함으로써 공동 

세부 유형 분류에 유의미하게 기여함을 확인하였다.  
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