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 요 약   

 
본 논문은 강화학습 기반 안전 제어 시스템 구축을 위한 사전 연구로서, 제지 공정의 안전 운전 영역을 데이터 

기반으로 정량화하고 해당 영역 이탈 시 품질에 미치는 영향을 분석한다. 실제 조업 데이터 31,665 개 샘플을 

대상으로 분위수 분석과 데이터 밀도 기반 필터링을 통해 전체 데이터의 98.2%를 포함하는 수분 3.99~5.29% 

구간을 Safe Zone 으로 정의하였다. 품질 점수는 Safe Zone 내 데이터 중앙값을 목표 운전점으로 설정하고 

Gaussian 함수로 산출하였다. 분석 결과, Safe Zone 외부 운전 시 품질 점수가 88.8% 감소하였으며, 통계적으로 

매우 유의미하다. 본 연구에서 도출된 Safe Zone 은 강화학습 에이전트의 행동 제약(Action Constraint) 또는 보상 

함수(Reward Shaping)에 직접 통합될 수 있다. 

 

Ⅰ. 서론  

제지 공정과 같은 에너지 집약적 연속 공정은 평량과 

수분 등 핵심 품질 변수 간에 복잡한 비선형적 

상호작용이 존재하며, 특정 조건에서는 지절 등 공정 

불안정성이 증가한다[1]. 통계적 공정 모니터링 기법은 

이러한 다변량 공정의 이상 상태를 조기에 감지하는 데 

활용되고 있으나, 안전 운전 영역의 명시적 정의에는 

한계가 있다[1]. 기존 연구에서는 클러스터 분석을 통해 

스팀 에너지 운전 패턴을 분류하고 에너지 관리 전략을 

제시한 바 있으며[2], 본 연구는 이를 확장하여 품질과 

안전성을 동시에 고려한 운전 영역의 정량적 정의를 

시도한다. 

최근 강화학습은 복잡한 공정 제어에 적용되고 있으나, 

학습 초기 탐색 과정에서 위험한 행동을 수행할 수 

있다는 한계가 있다. 이를 해결하기 위해 안전 제약 

조건을 사전에 정의하고 RL 에이전트에 통합하는 안전 

강화학습 연구가 활발히 진행되고 있다. 본 연구는 

이러한 RL 안전 제어의 사전 단계로서, 실제 조업 

데이터에서 안전 운전 영역을 정량적으로 도출하고 해당 

영역 준수가 품질에 미치는 영향을 통계적으로 검증한다. 

Ⅱ. 본론  

1. 데이터 특성 및 전처리 

국내 제지 공장에서 2022 년 1 년간 수집된 조업 

데이터를 분석하였다. 전체 2,000 여 개의 공정 변수 중, 

가장 생산량이 많은 지종을 대상으로 핵심 품질 변수인 

평량과 수분을 추출하였다. 결측치 20% 이상인 변수를 

제거하고 전후방 보간을 적용하여 총 31,665 개의 유효 

샘플을 확보하였다. 

2. 분위수 기반 경계선 분석 

수분 구간 

(%) 
샘플 수 

평량   

5th Pctl 

평량 

Median 

평량   

95th Pctl 

3.99~4.42 4,266 157.1 159.8 165.2 

4.42~4.85 20,692 158.1 160.4 165.9 

4.85~5.29 6,114 160.0 163.0 166.9 

[표 1] 수분 구간별 평량 경계 

수분 함량을 10 개 구간으로 나누고, 각 구간에서 평량의 

통계량(5th, 50th, 95th percentile)을 분석하였다. [표 

1]은 주요 구간의 분석 결과를 보여준다. 수분이 

증가할수록 허용 가능한 평량의 하한선(5th percentile)이 

상승하는 경향을 확인하였으며, 이는 고수분-저평량 

조합에서 지절 위험이 증가하는 물리적 특성을 반영한다. 

3. 안전 운전 영역 정의 

분위수 경계만으로는 샘플 수가 극히 적은 이상 운전 

구간까지 포함될 수 있다. 예를 들어, 수분 2% 구간은 

11 개(0.03%)의 샘플만 존재하여 통계적 신뢰성이 

낮으며, 이러한 희소 영역은 일시적 공정 이상이나 센서 

오류로 인해 발생한 것으로 판단된다. 이에 데이터 밀도 

기반 필터링을 추가로 적용하였다. 밀도 임계값으로 3%, 

5%, 10% 기준을 비교한 결과, 정상 운전 패턴을 충분히 

포함하면서 이상 운전을 배제할 수 있는 5%를 최종 



임계값으로 선정하였다. 이 기준을 적용한 결과, 수분 

3.99~5.29% 구간(3 개 구간, 31,091 개 샘플)이 Safe 

Zone 으로 도출되었으며, 이는 전체 데이터의 98.2%를 

포함한다. 반면, 수분 3.99% 미만 및 5.29% 초과 

영역(7 개 구간, 574 개 샘플, 1.8%)은 밀도 부족으로 

제외되었다. 

 

[그림 1] 수분 구간별 데이터 분포 및 Safe Zone 정의 

[그림 1]은 수분 구간별 샘플 분포를 보여준다. 녹색 

막대는 Safe Zone(수분 3.99~5.29%)에 해당하며, 전체 

데이터의 98.2%가 이 영역에 집중되어 있다. 빨간색 

막대는 데이터 밀도가 낮아 제외된 영역으로, 지절 

위험이 높은 극단적 운전 조건이거나 LOT 교체 시 

발생하는 과도 상태로 해석된다. 도출된 Safe Zone 의 

경계는 강화학습 에이전트의 행동 공간 제약 또는 보상 

설계에 직접 활용될 수 있다. 

4. 품질 영향 분석 

Safe Zone 준수가 품질에 미치는 영향을 정량화하기 

위해 Gaussian 함수 기반 품질 점수(0~10 점)를 

정의하였다[3]. 목표 운전점은 Safe Zone 내 데이터의 

중앙값인 평량 161.65 g/m², 수분 4.66%로 

설정하였으며, 이는 숙련 운전자들이 경험적으로 

유지하는 최적 운전 조건과 일치함을 현장 검증을 통해 

확인하였다. 품질 점수 Q 는 식 (1)과 같이 정의된다. 

𝑄 = 10 ⋅  exp (− (
𝐵𝑊−𝐵𝑊𝑡𝑎𝑟𝑔𝑒𝑡

𝜎𝐵𝑊
)

2
− (

𝑀−𝑀𝑡𝑎𝑟𝑔𝑒𝑡

𝜎𝑀
)

2
)   (1) 

식 (1)에서 Q 는 품질 점수(0~10), BW 와 M 은 현재 

평량(g/m²)과 수분(%)을 나타낸다. BWtarget 과 Mtarget 은 

목표값(각각 161.65 g/m², 4.66%)이며, σBW 와 σM 은 각 

변수 표준편차의 2 배를 스케일 파라미터로 사용하였다. 

스케일 파라미터를 표준편차의 2 배로 설정한 것은 

정규분포 가정 하에서 약 95%의 데이터가 유의미한 

품질 점수 범위 내에 포함되도록 하기 위함이다. 이 

Gaussian 기반 품질 함수는 목표 운전점에서 

최대값(10점)을 가지며, 목표에서 멀어질수록 지수적으로 

감소한다. 

영역 샘플 수 평균 품질 점수 표준 편차 

Safe 

Zone 

31,091 

(98.2%) 
7.05 2.00 

Outside 

Zone 

574 

(1.8%) 
0.79 0.65 

차이 - -88.8% 
t=74.91, 

p<0.001 

[표 2] 영역별 품질 점수 비교 

 

[그림 2] Safe Zone 내외 품질 점수 분포 

Safe Zone 내외 품질 점수를 비교한 결과, [표 2]와 같이 

유의미한 차이가 확인되었다. 두 그룹 간 등분산 가정이 

기각되어(Levene's F=229.87, p<0.001), Welch's t-

검정을 수행하였다. Safe Zone 외부 운전 시 품질 점수가 

평균 88.8% 감소하였으며, 통계적으로 매우 

유의미하다(Welch's t(603.12)=74.91, p<0.001, Cohen's 

d=3.13). [그림 2]-(a) Box Plot 에서 녹색의 Safe 

Zone 은 중앙값 7 점 부근에, 빨간색의 Outside Zone 은 

1 점 미만에 집중되어 있다. [그림 2]-(b) 

Histogram 에서도 두 영역 간 명확한 품질 점수 차이를 

확인할 수 있다. 

Ⅲ. 결론  

본 논문은 분위수 분석과 데이터 밀도 기반 필터링을 

통해 제지 공정의 안전 운전 영역을 데이터 기반으로 

정량적으로 도출하였다. 도출된 Safe Zone 외부 운전은 

품질 저하를 직접적으로 유발한다고 단정할 수는 없으나, 

현저히 낮은 품질 점수와 강하게 연관됨을 통계적으로 

확인하였다. 이를 통해 숙련 운전자의 경험적 운전 

기준을 정량적 지표로 표현할 수 있음을 보였다. 향후 

연구에서는 도출된 Safe Zone 을 Constrained RL 

프레임워크에 통합하여 학습 과정에서 안전 영역 이탈을 

차단하는 Safe RL 시스템을 구축할 예정이다. 이를 통해 

숙련 운전자 수준의 안전성과 강화학습의 최적화 능력을 

동시에 달성하는 지능형 자율 운전 시스템을 개발하고자 

한다. 
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