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요 약

본연구는냄새예측모델개선및성능을높이고자, 분자구조와수용체결합확률정보를딥러닝기반으로지능적으로통합하는멀티-모달특징융합

프레임워크를 제안한다.

Ⅰ. 서 론

화학 분자의구조적특성을 활용하여 냄새속성을예측하는인공지능모

델 개발은 신약 개발 및 향료 산업 응용에 있어 그 중요성이 증대되고 있

다. 기존 연구들은 주로 분자 구조만을 활용하거나[1], 수용체 결합 정보와

의 단순 융합 방식[2]을 채택한다는한계가 있다. 본 연구에서는이를개선

한 멀티-모달 특징 융합 프레임워크를 제안한다.

Ⅱ. 본론

1. 데이터셋
본 연구에서는 분자 구조와 후각적 인식 사이의 관계를 학습하기

위해, 대규모 다중 레이블(Multi-label) 후각 데이터셋[3]을 활용하였
다. 데이터셋은 총 4,983개의 분자로 이루어져 있으며, 하나의 분자가
복수의 냄새 특성을 가질 수 있는 다중 레이블 형태를 띤다. 본 연구
는 이 138개의 냄새 클래스에 대한 이진 분류 과제를 수행하여 모델
의 성능을 평가하였다.

2. 모델 구조

전체 파이프라인은크게 세 부분으로구성된다. 첫째, 냄새 분자의
구조 정보와 후각 수용체의 서열 정보를 각각 GAT와 DeepPurpose
모델을통해 독립적인임베딩벡터로추출한다. 둘째, 추출된 두종류
의 특징 벡터를 결합하여 Fusion Model을 통해 고차원의 통합 임베
딩을 생성한다. 셋째, 최종적으로 CatBoost Classifier가 이 통합임베
딩을 입력받아 특정 냄새의 유무를 예측한다.

2.1. GAT
본 연구에서 사용한 GAT(Graph Attention Network)[4]는 그래프

내각노드가 이웃노드들과의상호작용중요도를 어텐션메커니즘을
통해 학습하는 모델이다. 각 원자는 주변 이웃 원자들이 자신의 표현
을 형성하는 데 기여하는 정도를 어텐션 스코어로 계산하며, 이를 통
해분자구조내에서상대적으로중요한원자및결합에더큰가중치
를부여한다. 이러한 특성으로인해 GAT는 구조정보뿐만아니라원
자 간 상호작용의 중요도까지 효과적으로 반영할 수 있으며, 어텐션
가중치가 모델의 판단 근거를 해석하는 데 활용될 수 있다.

2.2. DeepPurpose
DeepPurpose[5]는 본래 약물–타겟 상호작용(Drug–Target

Interaction, DTI) 예측을 목적으로 설계된 모델이지만, 분자와 단백
질간 결합을 학습한다는 점에서냄새 분자와 후각 수용체 간의 상호
작용을 모델링하는 데에도 적합하다. 이에 본 연구에서는
DeepPurpose를 후각 예측 문제에 적용하여, 냄새 인지를 결정하는
핵심 요소인 후각 수용체 결합 정보를 추출한다.
DeepPurpose 모델은 냄새 분자의 화학적 정보와 후각 수용체의

아미노산 서열을 동시에 입력으로 받아, 각각을 벡터 표현으로 인코
딩한다. 이후 두 입력 간의 상호작용을 학습하여 분자–수용체 간 결
합 가능성을 확률값으로 예측한다. 이 결합 정보는 분자의 구조적 특
징과 생물학적메커니즘을연결하는 역할을 수행하며, 최종적인 냄새
인지 예측의 판별력을 향상시키는 데 기여한다.

2.3. Fusion Model
본연구는앞서추출된분자구조임베딩과수용체결합확률임베

딩벡터를저차원의 특징공간으로변환함으로써모델의 과적합을방
지하고 서로 다른 도메인의 정보를 통합하여 일반화 성능을 확보했
다.
일반적으로 냄새 데이터셋은 특정 냄새 라벨이 존재하는 양성 샘

플(Positive)에 비해, 존재하지 않는 음성샘플(Negative)이 압도적으
로많은심각한클래스불균형문제를가진다. 따라서, 본 연구에서는
BCEWithLogitsLoss를 기반으로 Gamma와 Alpha 파라미터를 적용
한손실함수를 도입하였다. 이를 통해쉽게 예측되는다수의음성샘
플에 대한 가중치를 낮추고, 학습이 어려운 소수 클래스에 모델이 집
중하도록 유도함으로써 불균형 데이터 환경에서도 냄새 예측 성능을
최적화하였다.

그림 1. 냄새 예측을 위한 멀티 모달 특징 융합 모델의
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3. 실험 결과
3.1. 수용체 결합 정보의 유효성 검증
본연구의핵심가설인 ‘분자–후각수용체결합정보의통합이냄

새 예측 성능을 향상시키는가’를 검증하기 위해, 분자 구조 정보만을
입력으로 사용하는 Baseline모델과분자구조 및수용체 결합 정보를
융합한 제안 모델 간의 성능을 비교 분석하였다. 두 모델은 동일한
GAT 백본 구조를 사용하였으며, 수용체 결합 정보의 포함 여부만을
차이로 두어 공정한 비교가 이루어지도록 설계하였다. 평가지표로는
다양한 분류 임계값에 대해 모델의 변별력을 종합적으로 평가할 수
있는 AUROC(Area Under the ROC Curve)를 채택하였다.

표 1. GAT 기반 Baseline와 GAT와 수용체 결합 확률을 융합한 제안

모델 간 성능 비교

분석 결과, Baseline 모델은 AUROC 0.8645를 기록한 반면, 제안
모델은 0.8985를 달성하였다. 이는 후각 수용체 결합 정보가 분자 구
조 정보만으로는 포착하기어려운 화학적-생물학적 상호작용을 보완
하여 모델의 일반화 능력을 유의미하게 개선했음을 입증한다. 이 결
과는 후각인지예측에 있어 분자 구조 정보뿐만 아니라생물학적표
적인수용체 결합정보가필수적이며핵심적인 역할을수행하는특징
임을 시사한다.

3.2. 기존 연구와의 성능 비교
제안 모델의 성능 검증을 위해 전통적인 머신러닝 기법부터 최신

딥러닝 프레임워크까지 포괄적인 성능 비교를 수행하였다.

표 2. 최신 딥러닝 프레임워크 및 기존 기법들과의 성능 비교

비교 결과, 본 연구에서 제안한 모델은 AUROC 0.8958을 기록하
며 비교 대상 모델들 가운데 상위 수준의 예측 성능을 보였다. 초기
딥러닝기반 접근법[6,7]과비교하여 뚜렷한성능향상을확인하였으며,
최근 제안된 고성능 모델들[8,9,10]과 비교하였을 때에도 일관되게 높은
예측 정확도를 유지함으로써 분자 구조 정보와 수용체 결합 정보를
결합한 본 프레임워크의 경쟁력을 입증하였다.
한편, Multi-Feature GAT[11]은 본 연구 모델 대비 수치적으로 높

은예측성능을보였으나, 이 모델은데이터패턴학습극대화에 초점
을맞춘블랙박스적접근법의특성을가진다. 이에 반해본연구의모
델은예측 결과를수용체결합확률이라는 생물학적으로해석가능한
변수와 직접 연결하였다는 점에서 학술적 및 해석적 차별성을 가진
다.

Ⅲ. 결론

본연구에서는기존분자구조기반냄새예측모델들이가지는표
현적및구조적 한계를분석하고, 이미선행연구에서활용되어온분
자–후각 수용체 결합 정보를 보다 효과적으로 활용할 수 있는 모델
설계 개선 방향을 제시한다.
향후 단일 분자를 넘어 실제환경의 혼합물 냄새 예측으로범위를

확장할 필요가 있으며, 제안된 융합 프레임워크는 디지털 후각 및 로
봇 인지 시스템 등 다양한 응용 분야의 기반 기술로 활용될 수 있을
것으로 기대된다.

참 고 문 헌

[1] Kushagra Saini and Venkatnarayan Ramanathan,“Predicting odor

from molecular structure: a multi-label classification approach,”

Scientific Reports, vol. 12, 13863, 2022.

https://doi.org/10.1038/s41598-022-18086-y

[2] Seyone Chithrananda, Judith Amores, and Kevin K. Yang,

“Mapping the combinatorial coding between olfactory receptors and

perception with deep learning,” bioRxiv preprint, 2024.

https://doi.org/10.1101/2024.09.16.613334

[3] Aryan Amit Barsainyan, "Multi-Labelled SMILES–Odors

Dataset," 2024,

(https://www.kaggle.com/datasets/aryanamitbarsainyan/multi-labelled

-smiles-odors-dataset).

[4] P. Veličković et al., "Graph Attention Networks," in International

Conference on Learning Representations (ICLR), 2018.

[5] K. Huang et al., "DeepPurpose: a deep learning library for drug–

target interaction prediction," Bioinformatics, vol. 36, no. 22-23, pp.

5545–5547, Dec. 2020, doi: 10.1093/bioinformatics/btaa1005.

[6] A. Sharma et al., "SMILES to Smell: Decoding the structure–odor

relationship of chemical compounds using the deep neural network

approach," Journal of Chemical Information and Modeling, vol. 61, no.

2, pp. 676–688, 2021.

[7] Saini, K., & Ramanathan, V. (2022). Predicting odor from molecular

structure: a multi-label classification approach. Scientific Reports, 12.

https://doi.org/10.1038/s41598-022-18086-y

[8] M. Zhang et al., "A deep position-encoding model for predicting

olfactory perception from molecular structures and electrostatics," npj

Systems Biology and Applications, vol. 10, 2024.

[9] J. Suh et al., "A comparative study of machine learning models on

molecular fingerprints for odor decoding," Communications Chemistry,

2025.

[10] B. K. Lee et al., "A principal odor map unifies diverse tasks in

olfactory perception," Science, vol. 381, no. 6661, 2023.

[11]H. Xie et al., "Molecular Odor Prediction Based on Multi-Feature

Graph Attention Networks," arXiv, vol. abs/2502.01430, 2025. [Online].

Available: https://arxiv.org/abs/2502.01430

Method 입력 특징 AUROCBaseline Molecular Graph 0.8645
Ours

Molecular Graph +
Receptor Binding 

Probability
0.8958

Method 발표 연도 AUROCMulti-Feature GAT 2025 0.9356HMFNet 2025 0.9316Ours 2025 0.8958POM 2025 0.894Saini et al. 2022 0.830Suh et al. 2025 0.828Mol-PECO 2024 0.813SMILES to Smell 2021 0.760


