

Shaping Smart Radio Environment through Reconfigurable Flexible Antennas for Beyond 6G

Krisma Asmoro, Soo Young Shin*
 Department of IT Convergence Engineering,
 Kumoh National Institute of Technology (KIT), Gumi, South Korea
 Email: {krisma, wdragon*}@kumoh.ac.kr

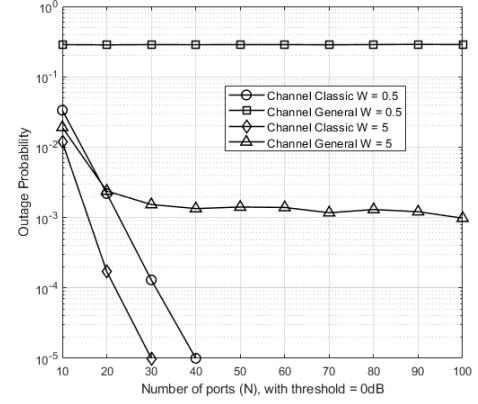
Abstract

In the last decade, rapid wireless technology advancements have driven a surge in mobile data demand and connected devices. With 6G deployment offering high-quality, low-latency services, research has focused on meeting these demands. Recently, reconfigurable surfaces emerging as a promising solution for smart radio environments through their capabilities of manipulating electromagnetic waves. Thus, it leads to a paradigm shift from conventional antennas to flexible reconfigurable antennas where it can dynamically adjust its topology according to user location. This paper proposed a short survey related to emerging reconfigurable flexible antennas which appears as the strong candidate to enhance spectral efficiency. In addition, this paper focusses on the study of spectral efficiency enhancement for fluid antenna, movable antenna, pinching antenna, and pixel-based antenna.

I. Introduction

Considering standardization and commercialization in 5th generation (5G) of wireless communications, now researchers, engineers, and executives from the academia industry have turned their attention to new candidate technology for the upcoming 6G communication. With the rising concept of reconfigurable intelligent surfaces (RIS) that can adapt based on incoming electromagnetic waves (EM), leads to a concept called smart radio environment [1]. On the other hand, a concept of smart radio environment enables low-cost deployment of wireless equipment which can adapt or dynamically adjust for different user purposes [2]. Hence, it causes a paradigm shift of designing antennas, from static topology to dynamic topology.

Several reconfigurable-based array antennas have been proposed to enhance spectral efficiency by dynamically adjusting surface, inter-antenna distance, or intentionally turned-off some of the elements. This paper proposes a short survey related to the existing structures of reconfigurable flexible antennas. This study discusses the benefits and practical perspective of appearances of flexible and reconfigurable antennas.


II. Fluid Antenna System (FAS)

Fluid antenna system proposed in [3], where the main purpose is to enhance signal diversity through port numbers (depicted in Figure 1). Consider N presets location with linear distribution, the displacement of k -th port is expressed as follows:

$$\Delta d_{k,1} = \left(\frac{k-1}{N-1} \right) W \lambda, \quad \text{for } k = 1, 2, \dots, N \quad (1)$$

where W is the total length. Furthermore, the classical channel model is expressed as:

$$\begin{cases} g_1 = \sigma x_0 + j \sigma y_0 \\ g_k = \sigma \left(\sqrt{1 - \mu_k^2} x_k + \mu_k x_0 \right) + j \sigma \left(\sqrt{1 - \mu_k^2} y_k + \mu_k y_0 \right) \end{cases} \quad \text{for } k = 2, \dots, N, \quad (2)$$

Figure 1. Performance evaluation of FAS-based transmission with various channel configurations.

, where it contains spatial correlations. Hence, the SNR is written as:

$$\Gamma = \sigma^2 \frac{E[|x|^2]}{\sigma_\eta^2} \quad (3)$$

In comparison, the generalized channel model for phase differences of arriving path is written as:

$$\begin{aligned} \phi_{g_k g_\ell}(\Delta d_{k,\ell}) &= \frac{\sigma^2}{2} J_0 \left(2\pi \frac{\Delta d_{k,\ell}}{\lambda} \right) \\ &= \frac{\sigma^2}{2} J_0 \left(\frac{2\pi(k-\ell)}{N-1} W \right). \end{aligned} \quad (4)$$

III. Pinching Antenna System (PAS)

Pinching antenna system proposed in [4], where a small dielectric particle is placed on the waveguide to smartly adjust EM wave for a certain user. In comparison with conventional antennas, a pinching mechanism ('Pin') reduces the total distance from BS. This is because in conventional transmission, the distance is calculated from BS to users. In pinching antenna system, the distance from BS and user can be extended by a waveguide and utilize

pinching mechanism to direct EM-wave to user. The data-rate is expressed as follows:

$$R_{\text{sum}}^{\text{Pin}} = \frac{1}{M} \sum_{m=1}^M \mathcal{E}_{\psi_m} \left\{ \log_2 \left(1 + \frac{\eta P_m}{|\psi_m^{\text{Pin}} - \psi_m|^2 \sigma^2} \right) \right\} \quad (5)$$

IV. Movable Antenna System (MAS)

Movable antenna system proposed in [5] and [6], where the BS can dynamically move the antennas based on user distribution. In general, the capacity of movable antenna system is written as:

$$C(\mathbf{q}, \mathbf{u}) = \log_2 \det \left(\mathbf{I}_{NB} + \frac{1}{\sigma^2} \sum_{k=1}^K p \mathbf{h}_k(\mathbf{q}, \mathbf{u}) \mathbf{h}_k(\mathbf{q}, \mathbf{u})^H \right) \quad (6)$$

where it consist of the position and orientation of the antennas itself.

V. Conclusion

This study observes 3 different reconfigurable antenna systems which had a potential to be implemented in 6G and beyond. FAS enhances outage probability through port diversity, PAS enhances spectral efficiency by covering more users on the same frequency band, while MAS enhances data-rates by adjusting an array. In the perspective of deployment cost, PAS has the cheapest, since it takes simple pinching mechanics on waveguide. However, there are several limitations among these 3 reconfigurable flexible antennas, especially on use case scenario and backward compatibility. This is because primary base stations work with conventional UPA for MIMO-based transmission. Hence, it is meaningful to investigate the interference model between flexible antennas and conventional MIMO – with a proper strategy to eliminates it.

ACKNOWLEDGMENT

This research was supported by the MSIT(Ministry of Science and ICT), Korea, under the ITRC(Information Technology Research Center) support program(IITP-2025-RS-2024-00437190) supervised by the IITP(Institute for Information & Communications Technology Planning & Evaluation, 50%) This work was supported by Innovative Human Resource Development for Local Intellectualization program through the Institute of Information & Communications Technology Planning & Evaluation(IITP) grant funded by the Korea government(MSIT) (IITP-2025-RS-2020-II201612, 50%)

REFERENCE

[1] R. Liu, Q. Wu, M. Di Renzo and Y. Yuan, "A Path to Smart Radio Environments: An Industrial Viewpoint on Reconfigurable Intelligent Surfaces," in *IEEE Wireless Communications*, vol. 29, no. 1, pp. 202–208.

[2] M. Di Renzo *et al.*, "Smart Radio Environments Empowered by Reconfigurable Intelligent Surfaces: How It Works, State of Research, and The Road Ahead," in *IEEE Journal on Selected Areas in Communications*, vol. 38, no. 11, pp. 2450–2525, Nov. 2020.

[3] K. -K. Wong, A. Shojaeifard, K. -F. Tong and Y. Zhang, "Fluid Antenna Systems," in *IEEE Transactions on Wireless Communications*, vol. 20, no. 3, pp. 1950–1962, March 2021.

[4] Z. Ding, R. Schober and H. Vincent Poor, "Flexible Antenna Systems: A Pinching-Antenna Perspective," in *IEEE Transactions on Communications*. (Early Access)

[5] X. Shao, R. Zhang and R. Schober, "Exploiting Six-Dimensional Movable Antenna for Wireless Sensing," in *IEEE Wireless Communications Letters*, vol. 14, no. 2, pp. 265–269, Feb. 2025.

[6] X. Shao, Q. Jiang and R. Zhang, "6D Movable Antenna Based on User Distribution: Modeling and Optimization," in *IEEE Transactions on Wireless Communications*, vol. 24, no. 1, pp. 355–370, Jan. 2025, doi: 10.1109/TWC.2024.3492195.