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요 약

본 논문에서는 다중 저궤도 위성 환경에서 트래픽 수요 예측, 링크 품질, 경로 지연 등을 통합 고려한 다변수 최적화 문제를 해결하기 위해 심층
강화학습 기반 링크 선택알고리즘을 제안한다. 시뮬레이션결과, 제안한 방안은 Exhaustive Search가 도출한최대 보상 값에 근접하는 성능을 달성하
여 알고리즘의 학습 효과를 입증하였다.

Ⅰ. 서 론
다중저궤도(Low Earth Orbit, LEO) 위성이 운용되는 6G 시대의 비지

상 네트워크(Non-Terrestrial Network, NTN) 환경에서는, 위성-사용자

간서비스링크와위성-게이트웨이간피더링크선택이통신 품질을좌우

한다. 하지만 단순하게 거리 및 Signal-to-Noise Ratio(SINR) 기반 선택

은 트래픽 집중, 서비스 불균형, 빈번한 링크 재구성 등으로 인해 성능 저

하를 유발할 수 있다 [1]. 이에 본 연구는 링크 선택 문제를 단일 요소가

아닌 트래픽 수요 예측, 채널 상태, 링크 용량, 경로 지연 등 복합적인 요

소가 얽힌 다변수 최적화 문제로 인식하고, 이를 효과적으로 해결하기 위

해 심층 강화학습(Deep Reinforcement Learning, DRL) 기반의 지능형

링크 선택 알고리즘을 제안한다.

Ⅱ. 시스템 모델 및 제안 알고리즘

그림 1. System Model

본 논문에서는 다중 저궤도 위성이 지상 셀이 위치한 사용자 단말 및

게이트웨이와 데이터를 송수신하는 시나리오를 다룬다. 시스템 모델은

NTN Deployment Scenario D4(Non-GEO, Ka band, Earth Fixed

beams)를 기반으로 설계되었으며, 그림 1과 같이 개의 위성이 각각 
개의 빔을 이용하여 개의 지상 셀에 서비스를 제공하는 환경을 가정하
였다 [2], [3]. 각 셀의 시계열 트래픽 수요는 Long-Short Term

Memory(LSTM) 기반의 예측 모델을 통해 생성되며, 위성의 위치는

Two-Line Elements set(TLE) 데이터를기반으로 타임스텝 에 따른 궤
도 위치로 정의하였다 [4].

특정 위성이 게이트웨이와 직접 피더링크를 형성할 수 있는 경우라도,

링크 품질 저하나 트래픽 집중 상황에서는 인접 위성을 경유하는

Inter-Satellite Link(ISL) 기반 멀티 홉경로가 오히려 전송지연 감소, 부

하 분산, 간섭 완화 측면에서 더 우수할 수 있다. 이를 고려해 본 연구는

각 위성을 심층 강화학습 기반 에이전트로 정의하고, 피더링크 및 서비스

링크 선택 문제를Markov Decision Process(MDP)로 모델링한다. 번째
에이전트의 상태  는          
로, 각 요소는 예측된 셀별 트래픽 수요, 링크 별 대역폭 가용량, 링크 품

질, 직전 연결노드, 연결 가능한릴레이노드 후보로구성된다. 행동  
는현재노드에서서비스링크, 피더링크, 또는 ISL 중 하나를선택하여다

음 릴레이 노드를 결정하는 것으로 정의된다.

보상함수는예측된트래픽수요와링크효율성을종합적으로반영하도

록설계하였다. 각 빔의 Achievable Data Rate(ADR)이 셀별트래픽수요

와 얼마나 정합하는지를 기반으로 보상을 부여하며, 전체 홉 수에 비례하

는 penalty 항을 추가함으로써불필요한 릴레이 경로를 억제하고 전송 지

연을최소화한다. 각 위성 의 보상함수는 다음과같이정의되며, unified
reward는 각 위성의 보상을 합산하여 계산된다.

  ∙max
  
 ∙ log    ∙  ∙ (1)

여기서 는 각 요소를 조정하는 가중치를 의미한다.  은 셀 에서
예측된 트래픽수요  와셀 에서의 ADR   간의 상대오차 기
반 정합도이며, 다음과 같이 정의한다.

   expmax  
    (2)

여기서 은 분모가 0이 되는 것을 방지하는 상수이다.
Ⅲ. 시뮬레이션 결과 및 결론

그림 2. Average Reward per Episode

본 논문에서는 제안 방안의 성능을 검증하기 위해 Exhaustive Search

와 Random Action을 비교 방안으로 설정하여 시뮬레이션을 수행하였다.

시뮬레이션은 고도 600km의 두위성이 9개의셀에대해서비스를 제공하

는 환경에서 진행되었으며, 제안 방안은 그림 2와 같이 학습 약 300 에피

소드이후안정적인수렴및 Exhaustive Search가 도출한 최대 보상값의

약 97% 수준까지근접하는결과를달성하였다. 이를 통해 DRL 기반링크

선택알고리즘이위성통신 환경에서일정수준이상의 보상을안정적으로

달성할 수 있음을 확인하였다.
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