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요 약
본 논문에서는 군집 unmanned aerial vehicle(UAV) 기반 통합 센싱 및 통신(integrated sensing and communication : ISAC) 시스템의 자원할당

최적화 문제를 multi-agent hierarchical reinforcement learning(MA-HRL)을 활용하여 해결하고자 한다. 군집 UAV 시스템에서 타겟 탐지와 UAV
간 통신은 필수적인 기능이다. ISAC은 같은 하드웨어와자원 속에서 센싱과 통신을 통합함으로써 군집 UAV 시스템의효율적 자원 활용과 성능 극대
화의해답이 될 수 있다. 군집 UAV 기반 ISAC 시스템에서의 자원할당은센싱과 통신성능 간최적화와 각 UAV 사이의 최적화가 이루어져야 하므로
매우 복잡한 문제를 형성한다. 본 논문에서는 MA-HRL을 이용하여 communication sum rate(CR)와 radar quality(SINR), 그리고 energy efficiency
(EE)를 최대화하고자 한다.

Ⅰ. 서 론

Unmanned aerial vehicle(UAV)를 활용한 통신 네트워크는 6G의 다양

한 확장성을 보여준다[1]. 통합 센싱 및 통신(integrated sensing and

communication : ISAC)은 한정된 자원에서 센싱과 통신의 상호보완적

기능으로 효율적인 시스템을 제공한다. ISAC 시스템에서 군집 UAV는

커버리지 확장 및 line of sight(LoS) 링크 확보가 가능하여 ISAC 시스템

에풍부한확장성을가져온다[2]. 하지만, 군집 UAV 기반 ISAC 시스템은

여러 대의 UAV 간 신호간섭제어, 자원할당과 같은 복잡한 문제들이존

재한다[3]. 본 논문은 Reinforcement Learning(RL)을 이용한 자원할당 최

적화를 통해 communication sum rate(CR), radar quality(SINR), 그리고

energy efficiency(EE)를 최대화하고자 한다. 이때, Q-learning(QL)으로

연산할 수없는방대한 action set을 고려하기위해 hierarchical RL(HRL)

을 활용하여 그 문제를 해결하고자 한다.

Ⅱ. 시스템 모델

본 논문에서는 Fig. 1과 같은 군집 UAV 기반 ISAC 시스템을 고려한

다. 공통된 목적지를 갖고 비행하는 군용 군집 UAV는 지속적인 실시간

적 UAV 탐지와원활한 정보 통신이필수적이다. UAV들은 mmWave 빔

포밍으로 서로에게 통신하고 target을 탐지한다. 이때, UAV들을 개별

agent로 정의하며 각 agent들은 beam, channel, power를 어떻게 활용해

야 통신과탐지성능을 동시에향상하고에너지 효율을극대화할 수 있을

지행동과보상의관계를학습한다. 이때, beam, channel, power의 자원할

당은경우의수가너무많다. 따라서, Fig. 1과 같이 HRL을 활용하여방대

한 행동 집합에 대한 문제를 해결하고자 한다.

Fig. 1 제안하는 MA-HRL 프레임워크

A. 통신 모델

UAV 간 통신은 free space와 rician fading으로 정의되며 다음과 같다.

  ×  (3)

  (4)

   
      (5)

여기서   은각각송/수신안테나 gain이다. LoS가 지배적인 A2A 통
신이기 때문에 와 같이 rician fading 모델을이용한다. 이에 따라
서 통신 신호의 SINR은 아래와 같이 계산할 수 있다.

    (6)

여기서  는 같은 채널을 사용하는 빔들에 의한 간섭 신호의 세기, 는
볼츠만 상수, 는 잡음온도, 은한 채널의 대역폭이다. 위의 SINR로
achievable communication rate을 계산하면 아래와 같다.

   log  (7)

B. 센싱 모델

탐지 성능을 계산하기 위한 센싱 모델은 다음과 같다.

  × (8)

   (9)

UAV와 target 사이의 탐지 전파 경로손실은 (9)와 같다. 여기서 는
radar cross section이다. 센싱 모델도 rician fading 모델을 이용한다. 이

에 따라서 탐지 신호의 SINR은 아래와 같이 정의된다.

    (10)

C. Problem Formulation

위의 모델 정의에 따라 문제를 아래와 같이 정의한다.

    max  
     ∀∈ (11)

         ≥ ∀∈ (12)

        ≥  ∀∈ (13)

    ≠      ∀∈ (14)



는 state step을 의미하고 는 한시나리오의 step 집합이다. (12)은 각
step에서 탐지를 선택한 beam이 하나 이상있어야 함을의미한다. (13)는

각 agent가 최소 1회 통신을 수행해야 함을 의미한다. (14)는 각 agent는

이전 step에서 사용한 채널을 다음 스텝에서 사용할 수 없음을 나타낸다.을 해결하기 위해 multi-agent HRL (MA-HRL)을 이용한 기법을 탐
구하고 multi-agent QL(MA-QL)과 그 성능을 비교한다. MDP는 아래와

같다.

1) State space : 시스템의 상태는 UAV들의 위치/속도, target의 위치,
state step 번호를 갖는다.

            ≤ ≤ (15)

2) Action space : 각 agent들의 행동는 beam들이 사용되는 task,
channel, power의 조합         를 선택하는 것이다.               (16)

  ∼   ∼        ∼   ∼  
는 번째 UAV agent의 행동 집합이고 는 agent의 개수다. 는
agent가 자원을 할당할 beam을 의미하고 는 beam이 어떤 task(통신 또
는 탐지)에 활용될지를 나타낸다. 각 agent는 개의 beam, 개의
channel, 개의 power level 중에서 자원을 선택한다.
3) Reward space : 보상은 아래와같이 상위 보상()과 하위 보상
()로 구분된다.

   
     (17)

   
상위 보상으로는 CR과 SINR의 합과 패널티를 부여하고, EE는 하위 보상

으로 이용한다. EE는 다음과 같이 계산한다.

      (18)

패널티의 경우 (12), (13)의 제약을 위반하는 횟수를 로 세며
상위 보상을 그 횟수만큼 감소시킨다.

본 논문에서는 Fig. 1과 같이 계층적 선택 구조로 나눠 MA-HRL을 구

성한다. 상위 계층은 행동   를 정하고(Q-table), 상위 행동은 하위
상태로 적용되며 하위 계층에는  을 결정한다(Deep Q-Network). 세
자원 중  를 하위로 분리함으로써더 높은 빈도의 선택 경험으로 EE를
빠르게 최대화할 수 있고, DQN을 적용하여 다른 agent의 행동보다는 자

신의 행동과 보상 간의 관계를 효과적으로 학습할 수 있다.

Ⅳ. 시뮬레이션 결과

Table. 1 시뮬레이션 파라미터

Parameter Value

           
∼   ∼
 ×                             
MA-QL은 Fig. 2-(b)의 경우 행동공간이 455,000개가 되어 학습이 동

작하지않았다. 따라서, episode와 max step을 (8000, 10)으로 진행하였다.

(a) Simple :        

(b) Complicated :        
Fig. 2 시뮬레이션 결과

시뮬레이션 결과, 단순한 상태 Fig. 2-(a)에서는 MA-HRL이 MA-QL

보다 최종 도달 보상이 우세하나 전반적으로 비슷한 성능을 보인다. 하지

만, 복잡한 상태 Fig. 2-(b)에서는 MA-HRL이 MA-QL보다 보상 및 학

습 안정성 측면에서 모두 우월함을 확인할 수 있다.

Ⅴ. 결론

본 논문에서는 군집 UAV 기반 ISAC 시스템에서의 MA-HRL을 활용

한 자원할당 최적화 기법을 탐구하였다. 시뮬레이션의 결과를 통해서

MA-HRL을 이용한 행동공간의 계층화는 증가하는 행동공간에 대한 대

안이 될 수있음을 확인했다. 하지만, 상위 계층에서여전히 Q-table을 활

용하고있기에더욱 복잡한상황에서는성능개선의한계가 있음을예상해

볼 수 있다. 따라서, MA-HRL의 한계와 문제점을 검토하고 개선하여 동

적인 시스템에 대한 자원할당 최적화문제를 해결할수 있는 연구로 발전

시킬 수 있을 것이다.
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