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요 약

본 논문에서는 도심 항공 모빌리티(Urban Air Mobility, UAM) 환경에서 무선 자원 활용 효율을 높이기 위해 Proximal Policy 

Optimization(PPO) 기반의 무선 자원 할당 방식을 제안한다. 서브 채널 수와 전송 전력을 연속적으로 조절하는 구조를 통해 에너지
효율성과 지연 시간 측면에서 성능을 살펴본다. 시뮬레이션 환경에는 ITU-R 기반의 Air-to-Ground(A2G) 채널 모델과 로그 정규
섀도잉을 고려하고, 기존 정책 기반 강화학습 방식 대비 우수한 성능을 가짐을 보인다.

Ⅰ. 서 론

 도심 항공 모빌리티(Urban Air Mobility, UAM)는 차세대 교통수단

으로 주목받고 있으며, 비행 중에도 안정적인 무선 통신을 유지하기 위한

지상과 비지상 네트워크 인프라 구축이 주목받고 있다. 특히 UAM 내부

의 탑승자들이 이용하는영상 스트리밍, 온라인 회의와 같은 고용량 서비

스는 높은 품질의통신을 요구하므로, 제한된 무선 자원을 효과적으로 사

용하는 방법이 필요하다 [1]. 기존 자원 할당방식은변화하는 사용자 요

구와 네트워크 환경에 유연하게 대응하기 어렵다. 이에 따라 본 논문에서

는 UAM 기반 네트워크에서 사용자 요청의 특성과 시스템 상태 정보를

바탕으로, 서브채널 수와전송전력을동적으로조절하는 PPO(Proximal 

Policy Optimization) 알고리즘기반 무선 자원 할당기법을 활용하여에

너지 효율성과 지연 시간을 최적화하고자 한다. 

Ⅱ. 본론

본 논문에서는 단일 UAM이 고도 300m에서 비행하며, 고정된 기지국

(Base Station, BS)과 통신하고 명의 탑승자가 존재하는 환경을 가정
한다. 통신은 OFDMA(Orthogonal Frequency Division Multiplexing 

Access) 기반으로, 코드 심볼 유지 시간(∆) 동안 개의 서브 채널을

사용한다. 또한각사용자요청은포아송분포를따라일정한요청을생성

하고, 생성된 요청은 큐에 저장되며, 강화 학습의 정책에 따라 서브 채널

의 개수와 전송 전력을 할당한다.

Ⅱ-Ⅰ. 시스템 모델

UAM과 BS 간의 A2G(Air-to-Ground) 통신 링크 채널은 ITU-R 

(ITU Radiocommunication Sector)에서 제안한 도심 환경 채널 모델을

적용하며, LoS(Line-of-Sight) 및 NLoS(Non-Line-of-Sight) 확률에

따라 평균 경로 손실을 계산한다. LoS 확률은 수식 (1)로 계산한다.

 ⋅
(1)

여기서   는 도심 환경 모델의 특징을 나타내는 파라미터를 의미하고는 UAM과 기지국이이루는 각도이다. LoS 채널에서의 경로 손실은 수

식 (2)와 같이 계산한다.

  log

  (2)

는 기지국과 UAM이 이루는 3차원 거리를 의미하며 , 
는 각

각 A2G 채널의 중심 주파수, LoS 채널의 추가적인 경로 손실을 의미한

다. A2G 채널에서의 최종적인 경로 손실은 수식 (3)과 같이 LoS 및

NLoS 경로 손실의 가중합으로 계산된다 [2].

그림 1. UAM 환경에서의 자원 할당 시스템 모델


   ⋅  ⋅ (3)

 반면, UAM 내부 사용자와의 통신 링크는 자유 공간 손실(Free Space 

Path Loss, FSPL) 모델에 로그 정규 섀도잉을 적용하여 구성한다. 그에

대한 수식은 (4)와 같다. 

  log

  (4)

여기서 는 UAM-사용자 채널에서의 중심 주파수, 는 사용자

의거리를 의미한다. 이 채널에서섀도잉 모델은  ∼의가우

시안(Gaussian) 확률 분포를 따른다. 경로 손실을 통해 수신 전력, 

SINR(Signal-to-Interference Plus Noise Ratio)를 수식 (5)를 사용하

여 계산하고, 이 값을 통해 데이터 전송률과 요청 에 대한 전송 에너지, 

그리고 에너지효율성은 수식 (6)을통해확인할 수있다. 지연시간은 수

식 (8)과 같이 모델링하였다.

  
        ⋅    ≠

      (5)

 
     log   ⋅∆ (6)

   (7)

   ∆  


(8)



Ⅱ-Ⅱ. 강화학습 프레임워크

본 논문에서는 무선 자원 할당 문제를 마르코프 결정 과정(Markov 

Decision Process, MDP)으로 모델링하고, 이를 기반으로 PPO 알고리

즘을 통해 최적의 자원 할당 정책을 학습한다. MDP는 상태, 행동, 보상

함수로 설계한다 [3].

 1) State(상태) :                
으로 정의한다. UAM 내부 사용자 의 요청 에 대한 요청 데이터
크기(), 마감 기한(), 요청 도착 후 경과 시간(), 전체 서브
채널 수 대비 사용 서브 채널 수(), UAM의 남은 배터리

에너지() 그리고 사용자 의 위치(  )로 정의한다. 타임

슬롯마다 요청 큐에 존재하는 개의 요청에 대해 매번 7차원 상태

벡터를 관측한다. 따라서 전체 상태는 ×  행렬로 구성된다.

2) Action(행동) : 행동은 요청 큐에 존재하는 개의 요청 각각에 대해
상태를 확인하고 서브 채널 비율 () 및 전송 전력 비율()을 연속적인
값으로 결정한다. 전체 행동은 다음과 같은 형태의 행렬로 출력된다.



 

    ⋮ ⋮  
   ∈   (9) 

 이를 다시 정수 형태로 변환하여 다음의 자원 벡터를 생성한다.

    ⋯      
    (10)

    ⋯     min ≤ ≤max (11)

 는 요청 에 할당되는 서브 채널의 수, 는 요청 의 서브 채널에
할당되는 전송 전력을 나타낸다.

3) Reward(보상) : 각 요청 에 대해 전송이 이루어진 후, 수식 (12)를

통해 보상이 계산된다.

 ⋅× exp⋅
  (12)

가중치를 통해 에너지 효율성과 지연 시간의 스케일을 맞추었고 지연

시간이 마감 기간보다 더 커지게 되면 보상이 줄어든다.

표 1. 시뮬레이션 / 강화학습 파라미터

Parameter Value Parameter Value

UAM 내부 

사용자 ()
6  

서브 채널 수() 15  -0.5 1000m Episode 1000

전체 시간() 100s Batch size 64

타임 슬롯(∆) 0.1s 할인율 0.99min  max 25, 30(dBm) 학습률 ×
   2.5, 5(GHz) 엔트로피 계수 0.005 80MHz 가치함수 계수 0.3  9.61, 0.16 클리핑 계수 0.3

Ⅲ. 시뮬레이션 결과 및 분석

그림 2는제안하는강화학습프레임워크를반복학습하여얻은누적보

상에 대한 그래프이다. 초기에는 5.0에서 낮게 출발하였으나 에피소드가

200을넘어가면서약 17.0에수렴한다. 또한그림 3은학습을통해진행한

에너지효율성과지연시간에대한그래프이다. 각지표는에피소드동안의

평균값을기록한것으로점차수렴하는과정을보여준다. 또한서브채널과

전력을균등하게할당하는정책기반의환경보다에너지효율성과지연시

간이더좋은성능을보인다.

그림 2. 에피소드당평균보상

그림 3. 에피소드당평균에너지효율및지연시간

Ⅳ. 결론

 본논문에서는PPO 알고리즘을사용하여에너지효율성과지연시간을줄

이고자동적으로자원을할당하는기법을사용하여기존정책기반의방식

보다더좋은성능을보이는것을확인하였다. 향후연구에서는QoS를구현

하여보다현실적인네트워크환경을구성하고기지국간핸드오버, 네트워

크간섭등여러요소를고려하여구현하고자한다.
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