

2 큐비트 레지스터에서 효율적인 비유니터리 연산자 양자 회로 설계 연구

오지수, 박영훈*

숙명여자대학교

lucy27@sookmyung.ac.kr, *yh.park@sookmyung.ac.kr

Design of an Efficient Two-Qubit Quantum Circuit for a Non-Unitary Operator

Oh Jisoo, Park Younghoon*

Sookmyung Women’s University

요 약

본 논문은 2-큐비트 환경에서 비유니터리 연산자를 효율적으로 구현하는 방법을 제안한다. 기존의 비유니터리 연산자의

회로는 비효율적이거나 많은 버려지는 보조 큐비트가 발생하였다. 본 논문에서는 2-큐비트 환경을 위한 비유니터리

연산자의 양자 회로 제안 기술을 제안한다. 기존 방식보다 버려지는 큐비트의 수를 줄이고, 양자 회로를 좀더

간소화하였다. 또한, 임의 수의 큐비트를 위한 비유니터리 연산자는 2-큐비트 비유니터리행렬로 분해할 수 있으므로 본
논문의 기술을 이용하여 임의의 비유니터리행렬도 효율적으로 구현할 수 있을 것으로 기대한다.

Ⅰ. 서 론

양자 컴퓨터는 고전 컴퓨터의 비트 대신 큐비트를 기

반으로 중첩과 얽힘와 같은 양자역학적 성질을 활용하여
고전적인 계산 방법으로는 실행이 어려운 높은 수준의

계산 역량을 제공한다. 암호 해독, 양자 시뮬레이션 등

다양한 응용 분야에서 그 잠재력이 대두되고 있다. 최근

양자 알고리즘 설계, 오류 보정 기법, 하드웨어 아키텍처
등 다양한 측면에서 활발한 연구가 진행되고 있지만, 아

직까지 하드웨어의 물리적 제약으로 인해 회로를 효율적

으로 설계하는 문제는 여전히 핵심적인 과제로 남아있다.

양자 회로의 모든 기본 연산은 양자 역학의 유니터리

성에 의해 유니터리 행렬로 표현되어야 한다. 이러한 연
산은 폐쇄된 계에서의 순수한 양자 상태의 진화에는 적

합하지만, 계산 중간에 측정을 수행하거나, 실제 양자 시

스템에서 발생하는 양자 결맞음과 노이즈 현상 등을 표

현하기에는 한계가 있다[1]. 또한, 기존의 유니터리 연산
자로만 구성된 양자회로에서 효율성을 위하여 비유니터

리 연산자를 사용할 수도 있다. 따라서, 비유니터리 연산

자가 현실적인 양자 회로 설계와 시뮬레이션에서 중요한

대안으로 제시되고 있다.

비유니터리 연산자를 구현하기 위한 기술은 꾸준히 제
안되어왔으나, 효율성이나 버려지는 보조큐비트의 수 문

제가 발생할 수 있다[1,2,3]. 본 논문에서는 2-큐비트

환경에서 효율적으로 동작할 수 있는 양자회로의 구현

방법을 제안한다.큐비트가 여러 개인 비유니터리 연산자
도 2-큐비트짜리 비유니터리 연산으로 분해할 수 있기

때문에, 본 논문의 기술을 이용하여 임의의 비유니터리

연산자도 효율적으로 구현할 수 있을 것으로 보인다.

Ⅱ. 비유니터리 행렬

정사각행렬 𝐴에 대하여, 𝐴의 complex conjugate 를 𝐴!
라고 하자. 𝐴𝐴! = 𝐴!𝐴 = 𝐼일 때, 정사각행렬 𝐴을 유니터

리 행렬이라고 하며, 이를 만족하지 않는 행렬을 비유니
터리 행렬이라고 한다. 양자회로로 비유니터리행렬을 구

현하는 방법은 많이 제안되었지만, 공통적으로 SVD

(Singular Vector Decomposition)를 이용한 분해로 시작

한다. 𝐴가 비유니터리행렬일 때, 𝐴 = 𝑈𝐷𝑉를 만족하는 두

유니터리행렬 𝑈, 𝑉와 대각행렬 𝐷를 찾는다. 𝑈와 𝑉는 유

니터리 연산자이므로 양자회로로 구현 가능하며, 𝐷는 비

유니터리행렬이기 때문에 특수한 처리가 필요하다.

𝐷를 구현하기 위하여 여러 가지 방법이 제안되고 있지

만, 가장 널리 쓰이는 방법은 제어연산자들의 곱으로 분

해하고, 각각을 따로따로 구현하는 방법이다. 이 때, 제어

연산자의 연산 파트는 𝑁(𝑎) = +1 0
0 𝑎. (단, |𝑎| ≤ 1)형태이

며, 𝑁(𝑎)는 다음 그림 1 과 같이 구현한다.

그림 1. 1-큐비트 비유니터리연산자 구현 예

여기서, 𝑈(𝑎) = 1 𝑎 √1 − 𝑎"
−√1 − 𝑎" 𝑎

4로, 유니터리 연산

자이다. |𝑥⟩ = 𝛼|0⟩ + 𝛽|1⟩일 때, 보조 큐비트에 |0⟩을 입력

하면 전체 입력은 𝛼|00⟩ + 𝛽|10⟩이 된다. 그러면 출력으로

는 𝛼|00⟩ + 𝑎𝛽|10⟩ − 𝛽√1 − 𝑎"|11⟩이 계산되는데, 𝛼|00⟩ +
𝑎𝛽|10⟩만이 우리가 원하는 결과이다. 따라서 두 번째 큐

비트를 관측하여 |0⟩이면 연산을 계속 진행하고, |1⟩이면

실패한 것이므로 다시 수행한다. 이 때, 하나의 비유니터

리 연산자를 수행하기 위해서는 보조 큐비트 하나가 버

려지게 된다.

Ⅲ. 기존의 2-큐비트 비유니터리 행렬 계산 방식

2-큐비트를 처리하기 위한 비유니터리 행렬은 4 × 4
행렬이며, 이를 SVD 를 이용해서 두 개의 유니터리 행렬

과 하나의 대각행렬의 곱으로 표현할 수 있다. 이 중, 유

니터리 행렬은 양자 회로로 구현이 가능하며, 대각행렬이

비유니터리행렬이기 때문에 이를 구현하기 위해서는 특

별한 방법이 필요하다. 비유니터리인 대각행렬을 구하기

위한 기술들은 몇 차례 제안되어 왔다.
𝐷(𝑑#, 𝑑", 𝑑$, 𝑑%)를 대각성분이 𝑑# , 𝑑" , 𝑑$, 𝑑%인 비유니

터리 대각행렬이라고 하자. 어떤 입력 2-큐비트 |𝑥⟩ =
𝛼|00⟩ + 𝛽|01⟩ + 𝛾|10⟩ + 𝛿|11⟩에 대하여(단, 𝛼 , 𝛽 , 𝛾 , 𝛿는

절댓값의 제곱의 합이 1인 복소수들), 𝐷(𝑑#, 𝑑", 𝑑$, 𝑑%)|𝑥⟩
은 다음과 같이 계산된다:

𝑑#𝛼|00⟩ + 𝑑"𝛽|01⟩ + 𝑑$𝛾|10⟩ + 𝑑%𝛿|11⟩
@|𝑑#𝛼|" + |𝑑"𝛽|" + |𝑑$𝛾|" + |𝑑%𝛿|"

즉, 00, 01, 10, 11이 관측될 확률의 비율이 |𝛼|": |𝛽|"	
: |𝛾|": |𝛿|"이었던 양자 상태가 |𝑑#𝛼|": |𝑑"𝛽|": |𝑑$𝛾|": |𝑑%𝛿|"
로 업데이트가 되는 것이다. 이를 위한 주요 연구로 Te-

rashima등이 제안했던 방식과 Lin 등이 제안했던 방식이
있다.

그림 2. Terashima 등이 제안한 비유니터리연산자 회로

우선, Terashima[1]등이 제안했던 방식은 대각행렬을
다음과 같이 곱의 형태로 분해하는 것으로 시작된다:

𝐷(𝑑#, 1,1,1) ⋅ 𝐷(1, 𝑑", 1,1) ⋅ 𝐷(1,1, 𝑑$, 1) ⋅ 𝐷(1,1,1, 𝑑%)
각각의 행렬은 controlled-non-unitary 연산자로 생각

할 수 있고, 이를 이용하여 그림 2 와 같이 회로를 구성

할 수 있다. 여기서 𝑁(𝑑&) = 11 0
0 𝑑&

4으로, 역시 비유니터

리연산자이다. 이를 구현하기 위하여 보조 큐비트를 사용

한다.
Lin[3] 등의 방식은 다음과 같다. 𝐷(𝑑#, 𝑑", 𝑑$, 𝑑%)을 𝑑#,

𝑑", 𝑑$, 𝑑% 중 절댓값이 가장 큰 값으로 나눠주고, 그 행

렬을 𝑃라고 하자. 그러면 대각 성분 중 하나는 1이고, 나
머지 대각성분들은 모두 절댓값이 1 이하가 된다. 대각행

렬을 곱했을 때, 각 양자상태 계수의 비율만 원하는 대로

나오면 되기 때문에 𝐷(𝑑#, 𝑑", 𝑑$, 𝑑%) 대신 𝑃를 곱해도 무

방하다. 그런데 𝑃는 비유니터리 행렬이므로 보조 큐비트
하나를 더 도입하여 유니터리 행렬이 되게끔 만들어준다.

그러면 큐비트가 총 3 개 필요하기 때문에 8 × 8 유니터

리 행렬 𝑈' = +𝑃 𝑄
𝑅 𝑆.를 만들어준다. 이 때, 유니터리 행

렬로 만들어주기 위해서는 𝑄𝑄! = 𝑅𝑅! = 𝐼 − 𝑃𝑃! , 𝑆𝑆! =
𝑃𝑃! , 𝑃𝑅! +𝑄𝑆! = 𝑃!𝑄 + 𝑅!𝑆 = 0을 만족하는 𝑄 , 𝑅 , 𝑆를

찾아야 한다.

Ⅳ. 제안 방식

본 섹션에서는 기존 방식들 대비 조금 더 효율적으로

2-큐비트 비유니터리 행렬을 계산하는 방법을 제안한다.

본 기술은 Terashima 등이 제안한, 네 개의 곱으로 나타
내는 방법 대신 두 개의 곱으로 나타내는 방법을 제안한

다. 우선, SVD 를 이용하여 비유니터리 행렬로부터 대각

행렬을 추출하며, 그 대각행렬을 𝐷(𝑑#, 𝑑", 𝑑$, 𝑑%)라고 하

자. 그리고, 이 대각행렬에서 𝑑#, 𝑑", 𝑑$, 𝑑% 중 절댓값이

가장 큰 것으로 나눈 결과를 𝐷(𝑑#(, 𝑑"(, 𝑑$(, 𝑑%()라고 하자.
그러면, 𝑑#(, 𝑑"(, 𝑑$(, 𝑑%(중 하나는 1이고, 나머지 셋은 절

댓값이 1 이하가 된다. 그러면, 𝐷(𝑑#(, 𝑑"(, 𝑑$(, 𝑑%()를 회로로

구현하면 되고, 본 논문에서 𝐷(𝑑#(, 𝑑"(, 𝑑$(, 𝑑%()는 다음 수식

을 이용하여 구현한다:
𝐷(𝑑#(, 𝑑"(, 𝑑$(, 𝑑%() = 𝐷(𝑑#(, 𝑑"(, 1,1) ⋅ 𝐷(1,1, 𝑑$(, 𝑑%()

여기서, 𝐷(𝑑#(, 𝑑"(, 1,1)는 첫 번째 큐비트가 |0⟩일 때 두
번째 큐비트에 𝐷(𝑑#(, 𝑑"()를 적용하는 연산자이고, 반대로

𝐷(1,1, 𝑑$(, 𝑑%()는 첫 번째 큐비트가 |1⟩일 때 두 번째 큐비

트에 𝐷(𝑑$(, 𝑑%()를 적용하는 연산자이다. 따라서, 다음 그

림 3 과 같이 회로로 구성할 수 있다.

그림 3. 제안 비유니터리 연산자 회로

이제, 𝐷I𝑑&(, 𝑑)(J를 구현할 수 있으면 된다. 이는 |0⟩이

입력으로 들어가는 보조큐비트를 추가하고, 𝐷I𝑑&(, 𝑑)(J 를

대신할 수 있는 4 × 4행렬을 구성한 뒤, 이를 통과시킨

결과 보조큐비트가 |0⟩이면 결과를 받아들이고, |1⟩이면

거절하는 방식으로 구현하면 된다. 𝐷 = 𝐷I𝑑&(, 𝑑)(J이라 할

때, 다음과 같이 𝑈*를 정의하자:

𝑈* =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑑&(N1 − 𝑑&(

" 0 0

−N1 − 𝑑&(
" 𝑑&(0 0

0 0 𝑑)(N1 − 𝑑)(
"

0 0 −N1 − 𝑑)(
" 𝑑)(⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

그러면 𝑈* 는 유니터리행렬이며, 𝐷 = 𝐷I𝑑&(, 𝑑)(J에 대한

회로는 다음과 같이 구성하면 된다:

그림 4. 대각 1-큐비트 비유니터리행렬 구현

위의 구조가 가능한 이유는 |𝑥⟩ = 𝛼|0⟩ + 𝛽|1⟩일 때, 보

조 큐비트 |0⟩을 추가하면 변형된 회로는 𝛼|00⟩ + 𝛽|10⟩이

되며, 여기에 𝑈* 를 적용하면 𝑑&(𝛼|00⟩ − 𝛼N1 − 𝑑&("|01⟩+

𝑑)(𝛽|10⟩ − 𝛽N1 − 𝑑)("|11⟩이 된다. 이 때, 두 번째 비트를

관측하여 |0⟩이 나오면 원하는 결과가 나오게 되기 때문

이다.

Ⅴ. 결론 및 향후연구

본 논문에서는 2-큐비트 환경을 위한 비유니터리

연산자의 효율적인 구현 방법을 제안하였다. 기존의 구현

방식 보다 좀더 단순하게 회로룰 구성할 수 있었으며,
필요한 보조 큐비트의 수도 다소 감소시킬 수 있었다.

향후에는 비유니터리 연산자의 성공 확률과 깊이, 연산자

수, 보조 큐비트 등 다양한 측정 수단들을 활용하여 기존

비유니터리 연산자 구현 기술과 비교분석을 하고자 한다.

참 고 문 헌

[1] Terashima H. and Masahito U. "Nonunitary Quantum

Circuit." International Journal of Quantum Information 03

(2003): 633-647.
[2] Zylberman J., Nzongani U., Simonetto A., and Debbasch

F.. "Efficient Quantum Circuits for Non-Unitary and

Unitary Diagonal Operators with Space-Time-Accuracy

trade-offs." 2024. hal-04554614

[3] Lin S., Dilip R., Green A., Smith A., and Pollmann F.,
"Real- and Imaginary-Time Evolution with Compressed

Quantum Circuits," PRX Quantum, vol. 2, issue. 1, 2021

