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Abstract 

 

Stochastic geometry (SG), particularly using Poisson Point Process (PPP) models, effectively predicts static wireless 

network coverage probability. This study assesses SG's application for mobile users. Findings show mobility 

modeling is sparse; when included, often via handoff analysis, coverage generally decreases with higher handoff 

rates, though reported impacts are mixed [1]. Critically, integrating varying terrain with mobility is largely absent, 

typically limited to urban/suburban scenarios. While SG offers simulation-validated theoretical predictions [2], 

significant gaps remain in modeling realistic dynamic scenarios involving mobile users across diverse terrains. 

 

Ⅰ. Introduction 

Predicting coverage probability is fundamental for 

wireless network design, and Stochastic Geometry 

(SG) offers powerful tools for modeling the spatial 

randomness of network components, particularly in 

static scenarios [3]. However, user mobility 

introduces significant dynamics, altering interference, 

necessitating handoffs, and impacting the Signal-to-

Interference Ratio (SIR) and thus coverage [1], [4], 

[5]. This study reviews the use of SG to predict 

coverage for mobile users, synthesizing findings from 

existing literature to examine modeling techniques, 

reported effects, and validation methods, especially 

the common omission of varying terrain factors. 

Ⅱ. Method 

A. Stochastic Geometry Frameworks for 

Coverage Analysis 

Stochastic Geometry (SG) provides the mathematical 

basis for analyzing wireless networks by modeling the 

spatial arrangement of network elements, like Base 

Stations (BSs), as random point processes [3]. This 

approach allows for the derivation of performance 

metrics influenced by spatial distribution. The most 

prevalent model identified in the reviewed literature 

for BS locations is the homogeneous Poisson Point 

Process (PPP) [1], [4], [5]. Characterized by 

Complete Spatial Randomness (CSR), the PPP assumes 

node locations are independent and uniformly 

distributed, simplifying analysis and yielding tractable 

expressions for key performance indicators. While the 

PPP's tractability makes it dominant, it is a 

simplification of real deployments. Consequently, 

alternative point processes like the Matérn Hard-Core 

Process (MHCP) or Poisson Cluster Process (PCP) are 

sometimes used to capture features like minimum BS 

separation or clustering, albeit less frequently [2]. 

While foundational for assessing basic connectivity, 

the spatial models and analytical tools provided by SG 

can also serve as a basis for analyzing or setting the 

context for more complex, dynamic systems. For 

instance, understanding the spatial distribution and 

potential connectivity derived from SG could inform 

the deployment and operation of advanced 

communication paradigms involving multi-agent 

reinforcement learning for autonomous systems [6], 



federated learning in IoT networks [7], spatial-

temporal dynamics in metaverse streaming [8], or 

even influencing channel assumptions in emerging 

areas like semantic communication [9].  

B. Incorporating User Mobility 

While foundational SG analyses often assume static 

users, incorporating mobility is essential for realistic 

performance evaluation, though less frequently 

addressed in the reviewed literature. Approaches to 

capture mobility effects include explicit handoff 

analysis, which models handoff rates based on speed 

and density, sometimes incorporating connection 

failure probabilities [1], [5]; user displacement 

models, which analyze interference correlation and 

joint coverage between two spatial points representing 

movement [4]; and directly linking user velocity to 

performance or behaviors like tier association. 

Despite these techniques, the reported overall impact 

of mobility on coverage probability is mixed and 

context-dependent. Increased handoff rates due to 

mobility logically tend to decrease coverage 

probability [1], yet potential gains have also been 

reported in specific contexts. Interference correlation 

reliably decreases with greater spatial separation [4], 

but a consistent, quantitatively well-understood 

picture of mobility's broader impact remains limited 

within current SG frameworks. 

Ⅲ. Conclusion 

While stochastic geometry effectively predicts static 

network coverage probability, its application to mobile 

user scenarios is less developed, showing mixed 

impacts. Critically, varying terrain considerations are 

largely absent in these SG frameworks. Although 

theoretical predictions are often simulation-validated, 

accurately predicting coverage in dynamic, real-world 

environments necessitates models that jointly 

incorporate realistic mobility and diverse terrain 

features, validated through practical, measurement-

based validation. 
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