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Abstract

Stochastic geometry (SG), particularly using Poisson Point Process (PPP) models, effectively predicts static wireless

network coverage probability. This study assesses SG's application for mobile users. Findings show mobility

modeling is sparse; when included, often via handoff analysis, coverage generally decreases with higher handoff

rates, though reported impacts are mixed [1]. Critically, integrating varying terrain with mobility is largely absent,

typically limited to urban/suburban scenarios. While SG offers simulation-validated theoretical predictions [2],

significant gaps remain in modeling realistic dynamic scenarios involving mobile users across diverse terrains.

I . Introduction

Predicting coverage probability is fundamental for
wireless network design, and Stochastic Geometry
(SG) offers powerful tools for modeling the spatial
randomness of network components, particularly in
static scenarios [3]. However, user mobility
introduces significant dynamics, altering interference,
necessitating handoffs, and impacting the Signal-to—
Interference Ratio (SIR) and thus coverage [1], [4],
[5]. This study reviews the use of SG to predict
coverage for mobile users, synthesizing findings from
existing literature to examine modeling techniques,

reported effects, and validation methods, especially

the common omission of varying terrain factors.

II. Method

A. Stochastic Geometry Frameworks for

Coverage Analysis

Stochastic Geometry (SG) provides the mathematical
basis for analyzing wireless networks by modeling the
spatial arrangement of network elements, like Base
Stations (BSs), as random point processes [3]. This

approach allows for the derivation of performance

metrics influenced by spatial distribution. The most
prevalent model identified in the reviewed literature
for BS locations is the homogeneous Poisson Point
Process (PPP) [11, [4], [5]. Characterized by
Complete Spatial Randomness (CSR), the PPP assumes
node locations are independent and uniformly
distributed, simplifying analysis and yielding tractable
expressions for key performance indicators. While the
PPP's tractability makes it dominant, it is a
simplification of real deployments. Consequently,
alternative point processes like the Matérn Hard-Core
Process (MHCP) or Poisson Cluster Process (PCP) are
sometimes used to capture features like minimum BS
separation or clustering, albeit less frequently [2].
While foundational for assessing basic connectivity,
the spatial models and analytical tools provided by SG
can also serve as a basis for analyzing or setting the
context for more complex, dynamic systems. For
instance, understanding the spatial distribution and
potential connectivity derived from SG could inform
the deployment and operation of advanced
communication paradigms involving multi—agent

reinforcement learning for autonomous systems [6],



federated learning in IoT networks [7], spatial-
temporal dynamics in metaverse streaming [8], or
even influencing channel assumptions in emerging

areas like semantic communication [9].
B. Incorporating User Mobility

While foundational SG analyses often assume static
users, incorporating mobility is essential for realistic
performance evaluation, though less frequently
addressed in the reviewed literature. Approaches to
capture mobility effects include explicit handoff
analysis, which models handoff rates based on speed
and density, sometimes incorporating connection
failure probabilities [1], [5]; wuser displacement
models, which analyze interference correlation and
joint coverage between two spatial points representing
movement [4]; and directly linking user velocity to
performance or behaviors like tier association.
Despite these techniques, the reported overall impact
of mobility on coverage probability is mixed and
context—-dependent. Increased handoff rates due to
mobility logically tend to decrease coverage
probability [1], yet potential gains have also been
reported in specific contexts. Interference correlation
reliably decreases with greater spatial separation [4],
but a consistent, quantitatively well-understood
picture of mobility's broader impact remains limited

within current SG frameworks.
II. Conclusion

While stochastic geometry effectively predicts static
network coverage probability, its application to mobile
user scenarios is less developed, showing mixed
impacts. Critically, varying terrain considerations are
largely absent in these SG frameworks. Although
theoretical predictions are often simulation-validated,
accurately predicting coverage in dynamic, real-world
environments necessitates models that jointly
incorporate realistic mobility and diverse terrain
features, validated through practical, measurement-

based validation.
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