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요 약 

 
본 연구는 transformer 기반 error correction code transformer (ECCT)의 성능 향상을 위한 전이 학습

(transfer learning) 전략을 비교·분석한다. ECCT 내에서 학습 가능한 주요 가중치로는 임베딩 가중치

(embedding weights)와 어텐션 가중치(attention weights)가 있으며, 이들은 서로 다른 부호들의 ECCT 

간에 전이될 수 있다. 본 연구에서는 두 종류의 가중치를 독립적으로 또는 결합하여 전이하였을 때 학습 수

렴 속도와 복호 성능에 미치는 영향을 정량적으로 평가하였다. 실험 결과, 임베딩 가중치만을 전이한 경우가  

가장 빠른 수렴과 우수한 성능 개선을 달성하였다. 반면 어텐션 가중치 전이는 오히려 초기 학습 지연과 성

능 저하를 유발할 가능성이 확인되었다. 결과적으로, 본 연구는 ECCT 전이 학습 시 부분전이, 특히 임베딩 

가중치 전이만을 활용하는 전략이 효과적임을 시사한다. 

 

I. 서 론 

Transformer 모델은 뛰어난 시퀀스 학습 능력으로 자연

어 처리· 음성· 영상· 통신 등 다양한 분야에서 탁월한 

성능을 보이고 있다[1]. 통신 분야에서는 error correction 

code transformer (ECCT) [2]가 제안되어, 채널 특성과 부

호 구조를 데이터 기반으로 학습하여 짧은 길이의 부호에서 

고전 복호기보다 우수한 성능을 달성하였다.  

하지만 ECCT가 최적의 성능을 발휘하기 위해서는 일반

적으로 대량의 학습 데이터와 긴 학습 시간을 필요로 한다. 

이는 방대한 부호들을 지원해야 하는 현대 통신 시스템에 

적합하지 않다. 이를 해결하기 위해, 본 연구에서는 전이 학

습(transfer learning)을 고려한다. 여기서 전이 학습이란 이

미 학습된 모델의 지식을 새로운 작업에 재활용함으로써 데

이터 요구량과 학습 시간을 획기적으로 줄이는 학습법이다

[3]. 본 연구는 ECCT의 효율적인 전이 학습법을 규명하기 

위하여, 학습가능한 임베딩 가중치(embedding weight)와 

어텐션 가중치(attention weight)를 각각 또는 함께 전이했

을 때의 효과를 체계적으로 비교·분석한다. 이를 통해 어떤 

방식의 전이 학습이 최적의 학습 수렴 속도와 복호 성능을 

만들어내는지 알아본다. 

 

 

II. 전이 학습 대상 가중치 및 전이 방법 

 
<그림 1> ECCT 구조와 학습 가능한 가중치들 𝑊𝑒𝑚𝑏 , 𝑊𝑄, 𝑊𝐾, 𝑊𝑉, 𝑊𝑂 

 

그림 1에 ECCT의 구조도를 도시하였다. (𝑛, 𝑘)  부호를 

위한 ECCT의 입력은 2𝑛 − 𝑘 비트이며, 이는 𝑛 비트의 수신 

신호의 강도와 𝑛 − 𝑘 비트의 하드 신드롬 값으로 이루어진다. 

ECCT의 입력은 임베딩 레이어에서 𝑊𝑒𝑚𝑏 ∈ 𝑅(2𝑛−𝑘)× 𝑑𝑚𝑜𝑑𝑒𝑙 을 

통해 𝑑𝑚𝑜𝑑𝑒𝑙차원 벡터로 변환된다. 각 디코더 블록에는 다중 

헤드 셀프 어텐션과 위치별 feed forward network (FFN) 

층이 포함되며, 어텐션 레이어의 𝑊𝑄, 𝑊𝐾 , 𝑊𝑉 ∈ 𝑅(𝑑𝑘∙ℎ)× 𝑑𝑚𝑜𝑑𝑒𝑙 

및 출력 레이어의 𝑊𝑂 ∈ 𝑅𝑑𝑚𝑜𝑑𝑒𝑙× 𝑑𝑚𝑜𝑑𝑒𝑙 가중치가 학습된다. 

먼저, 소스 ECCT 모델에서 학습 완료된 임베딩 가중치 

𝑊𝑒𝑚𝑏를 타겟 ECCT 모델의 임베딩 가중치 초기값으로 전이

할 수 있다. 서로 다른 부호들 간에서도, 비트 위치 별 

𝑑𝑚𝑜𝑑𝑒𝑙차원의 임베딩 차원의 분포가 크게 다르지 않기 때문

에 전이 학습이 효율적으로 이루어질 수 있다. 즉, 무작위 
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적인 초기화보다 더 유의미한 출발점에서 학습이 되도록 유

도한다. 하지만 서로 다른 부호들 간의 임베딩 가중치의 크

기가 서로 다르므로, 소스 임베딩 가중치의 일부분만 전이하

는 방법을 사용한다. 구체적으로, (𝑛𝑠,  𝑘𝑠) 소스 부호를 위한 

ECCT의 (2𝑛𝑠 − 𝑘𝑠) × 𝑑𝑚𝑜𝑑𝑒𝑙차원의 임베딩 가중치에서 수신 

신호 강도를 받는 상위 𝑛𝑠 행과 하드 신드롬을 받는 하위 

𝑛𝑠 − 𝑘𝑠행을 나누어 전이한다. 본 연구는 BCH (63,36) 부호

에서 BCH (31,16) 부호로의 전이 학습을 수행하였으며, 아

래 <그림 2>와 같이 소스 모델의 96차원 임베딩 가중치에

서 정보비트와 관련된 상위 31행과 패리티 비트에 관련된 

하위 15행을 추출하여 총 46행의 임베딩 가중치를 구성하

고, 이를 BCH (31,16) 모델의 46차원 임베딩 가중치 초기

값으로 활용하였다.  

 
<그림 2> 제안하는 ECCT의 효율적 전이 학습 방법 

 

정보 비트와 패리티 비트 관련 임베딩은 부호 내에서 각

각 데이터 표현과 오류 정정 구조라는 상이한 역할을 학습

한다. 따라서 이들을 분리하여 각 부분에 전이하면, 불필요

한 정보 간 간섭을 최소화하고 각 부분의 지식을 효과적으

로 전달하여 학습 효율 및 복호 성능을 향상시킬 수 있다. 

다음으로, 어텐션 가중치 전이는 소스 ECCT 모델의 디코

더 내 8개(본 실험 환경 기준)의 각 셀프 어텐션 레이어에

서 학습된 𝑑𝑚𝑜𝑑𝑒𝑙 × 𝑑𝑚𝑜𝑑𝑒𝑙 형태의 어텐션 가중치 투영 행렬 

𝑊𝑄 , 𝑊𝐾 , 𝑊𝑉 , 𝑊𝑂  타겟 모델의 초기 어텐션 가중치로 사용하는 

것이다. 어텐션 가중치는 임베딩 가중치보다 부호 구조에 의

존적일 가능성이 높아 전이 효과가 불확실하므로, 본 실험을 

통해 이를 분석하고자 한다. 

III. 전이 학습 실험 설정 

모델의 성능 평가는 학습 과정에서의 손실 변화 추이와 

수렴 속도 관찰을 통해 이루어졌다. 이는 부호 길이 및 정보

량의 차이가 있는 상황에서 전이 학습의 효과를 검증하기 

위함이다. 모든 실험에서 통신 채널 환경은 가장 기본적인 

additive white Gaussian noise (AWGN) 채널을 가정하여, 

외부 요인을 최소화하고 전이 학습 전략만의 성능 차이를 

비교하였다. ECCT는 총 8개의 디코더 레이어로 구성하였으

며, 𝑑𝑚𝑜𝑑𝑒𝑙 은 256으로 설정하였다. 학습 시 배치 크기는 

128로 설정하였고, 각 epoch는 1000번의 가중치 업데이트

를 수행하였다. 한 배치의 학습에 사용된 데이터 샘플은   

2, 3,..,7 dB의 𝐸𝑏/𝑁0를 갖는 AWGN 채널에서 고르게 생성

하여 구성하였다. 역전파 알고리즘으로 Adam 옵티마이저를 

사용하였으며, 초기 학습률은 1 ∙ 10−4 로 설정하고 Co-

sineAnnealingLR 스케줄러를 적용하였다. 총 1000 epoch

의 학습이 수행되었다. 

IV. 전이 학습 실험 설정 

 
<그림 3> 서로 다른 초기값을 사용한 ECCT들의 학습 곡선 

 

그림 3은 각 전이 전략에 따른 1000 epoch 동안 loss의 

변화 그래프이다. Random은 무작위 값으로 가중치를 초기

화한 모델, Embedding, Attention은 각각 임베딩, 어텐션 가

중치를 전이 학습시킨 모델이며, Combined는 두 가중치를 

모두 전이 학습시킨 모델이다. 임베딩 가중치 전이만 사용한 

모델이 가장 빠르게 수렴하며 무작위 초기값을 사용한 모델

보다 15.3% 낮은 최저 손실 값을 기록했다. 어텐션 가중치

의 전이는 오히려 학습 수렴 속도의 감소를 야기하였고, 이 

현상은 어텐션 가중치 전이를 단독으로 적용했을 때와 임베

딩 가중치 전이와 함께 적용했을 때 모두 관찰되었다. 이는 

소스 부호 BCH (63,36)에서 학습된 어텐션 가중치가 임베

딩 가중치보다 해당 부호의 구조적 특징을 강력하게 반영하

고 있기 때문이다. 따라서 편향성이 강한 어텐션 가중치를 

부호 구조가 다른 타겟 부호 BCH (31,16)로 전이하면 수렴

속도를 오히려 느리게 하는 부정적 효과가 발생한다. 

V. 결론 및 향후 연구 과제 

ECCT의 효율적인 전이 학습 전략을 실험적으로 분석한 

결과, 부분 전이 전략 중 임베딩 가중치 전이가 최종 복호 

성능을 15.3% 향상시키는 가장 탁월한 개선 효과를 보였다. 

반면 어텐션 가중치 전이는 동일 조건에서 오히려 성능 저

하를 유발하였으며, 이는 어텐션 가중치가 임베딩 가중치보

다 소스 부호의 구조에 더욱 민감하게 학습된다는 점을 시

사한다. 그러므로, ECCT 모델의 전이학습 시 복잡한 내부 

가중치 전체를 전이하기 보다는 임베딩 가중치 전이를 우선 

적용하고, 어텐션·FFN 등 고수준 특성 학습 가중치의 전

이는 소스 및 타겟 부호에 따라 검증을 거쳐 신중히 활용해

야 한다. 

향후 연구에서는 FFN과 layer normalization 가중치의 

전이 효과를 추가적으로 규명하여 전이학습 전략을 더욱 정

교화하고, 본 논문의 결과를 LDPC·Polar 등 다른 주요 오

류정정부호에 확장하여 보편적인 지침을 마련할 예정이다. 

또한 실제 통신 환경을 고려해 낮은 신호 대 잡음비 채널에

서의 전이 학습 유효성을 검증하고, 채널 환경에 특화된 미

세 조정 전략을 개발함으로써 ECCT의 실용적 적용 범위를 

한층 넓히고자 한다. 
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